Abstract:
An absorption modulator is provided. The absorption modulator includes a substrate, an insulation layer disposed on the substrate, and a waveguide having a P-I-N diode structure on the insulation layer. Absorptance of an intrinsic region in the P-I-N diode structure is varied when modulating light inputted to the waveguide. The absorption modulator obtains the improved characteristics, such as high speed, low power consumption, and small size, because it greatly reduces the cross-sectional area of the P-I-N diode structure.
Abstract:
Disclosed is a method of manufacturing a printed circuit board. The method of manufacturing a printed circuit board having a via for connecting one layer to another layer can include forming a circuit pattern on one surface of a carrier; processing a hole corresponding to the via on one surface of the carrier; compressing the surface of the carrier into one surface of an insulation body; removing the carrier; processing a via hole on the insulation body, corresponding to a position of the hole; and forming a conductive material in the via hole, to thereby easily process a hole for forming a via and have high design freedom
Abstract:
Provided are a photoelectric device using a PN diode and a silicon integrated circuit (IC) including the photoelectric device. The photoelectric device includes: a substrate; and an optical waveguide formed as a PN diode on the substrate, wherein a junction interface of the PN diode is formed in a direction in which light advances; and an electrode applying a reverse voltage to the PN diode, wherein N-type and P-type semiconductors of the PN diode are doped at high concentrations and the doping concentration of the N-type semiconductor is higher than or equal to that of the P-type semiconductor.
Abstract:
Provided is an optical device having a strained buried channel area. The optical device includes: a semiconductor substrate of a first conductive type; a gate insulating layer formed on the semiconductor substrate; a gate of a second conductive type opposite to the first conductive type, formed on the gate insulating layer; a high density dopant diffusion area formed in the semiconductor substrate under the gate and doped with a first conductive type dopant having a higher density than the semiconductor substrate; a strained buried channel area formed of a semiconductor material having a different lattice parameter from a material of which the semiconductor substrate is formed and extending between the gate insulating layer and the semiconductor substrate to contact the high density dopant diffusion area; and a semiconductor cap layer formed between the gate insulating layer and the strained buried channel area.
Abstract:
A method of manufacturing a metal interconnection of a semiconductor device includes forming a base layer with at least one groove, the at least one groove having an open upper portion, forming a first metal layer in the at least one groove, forming a seed metal layer on the first metal layer in the at least one groove, the seed metal layer being only on a bottom surface of the at least one groove, and forming a metal pattern grown from the seed metal layer to fill the at least one grove.
Abstract:
There are provided a semiconductor light emitting device that can be manufactured by a simple process and has excellent light extraction efficiency and a method of manufacturing a semiconductor light emitting device that has high reproducibility and high throughput. A semiconductor light emitting device having a substrate and a lamination in which a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer are sequentially laminated onto the substrate according to an aspect of the invention includes a silica particle layer; and an uneven part formed at a lower part of the silica particle layer.
Abstract:
A method of manufacturing a circuit board that includes: forming a conductive relievo pattern, including a first plating layer, a first metal layer, and a second plating layer stacked sequentially in correspondence with a first circuit pattern, on a seed layer stacked on a carrier; stacking and pressing together the carrier and an insulator, such that a surface of the carrier having the conductive relievo pattern faces the insulator; transcribing the conductive relievo pattern into the insulator by removing the carrier; forming a conduction pattern, including a third plating layer and a second metal layer stacked sequentially in correspondence with a second circuit pattern, on the surface of the insulator having the conductive relievo pattern transcribed; removing the first plating layer and seed layer; and removing the first and second metal layers, can provide a circuit board that has high-density circuit patterns without an increased amount of insulator.
Abstract:
A method of manufacturing a circuit board is disclosed. The method may include: forming a relievo pattern, which is in a corresponding relationship with a circuit pattern, on a metal layer that is stacked on a carrier; stacking and pressing the carrier onto an insulation layer with the relievo pattern facing the insulation layer; transcribing the metal layer and the relievo pattern into the insulation layer by removing the carrier; forming a via hole in the insulation layer on which the metal layer is transcribed; and filling the via hole and forming a plating layer over the metal layer by performing plating over the insulation layer on which the metal layer is transcribed. As the relievo pattern may be formed on the metal layer stacked on the carrier, and the relievo pattern may be transcribed into the insulation layer, high-density circuit patterns can be formed.
Abstract:
Provided is a high-speed ring optical modulator based on a silicon semiconductor, having increased optical modulation speed. The high-speed ring optical modulator includes a ring optical waveguide including a portion in which the refractive index varies, that is, a refractive index variation portion, and an optical waveguide having a constant refractive index. The refractive index variation portion comprises a bipolar transistor. Thus carriers can be supplied to and discharged from the refractive index variation portion, through which light is transmitted, at high speed, and thus the optical modulation speed can be increased.