摘要:
A method for purifying silicon bearing materials for photovoltaic applications includes providing metallurgical silicon into a crucible apparatus. The metallurgical silicon is subjected to at least a thermal process to cause the metallurgical silicon to change in state from a first state to a second state, the second stage being a molten state not exceeding 1500 Degrees Celsius. At least a first portion of impurities is caused to be removed from the metallurgical silicon in the molten state. The molten metallurgical silicon is cooled from a lower region to an upper region to cause the lower region to solidify while a second portion of impurities segregate and accumulate in a liquid state region. The liquid state region is solidified to form a resulting silicon structure having a purified region and an impurity region. The purified region is characterized by a purity of greater than 99.9999%.
摘要:
A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.
摘要:
The invention relates to methods of making unsupported articles of semiconducting material using thermally active molds having an external surface temperature, Tsurface, and a core temperature, Tcore, whererin Tsurface>Tcore.
摘要:
Methods for cropping a cylindrical ingot and, in some particular embodiments, for cropping a multicrystalline ingot such as a multicrystalline silicon ingot.
摘要:
A needle-like structure of silicon is provided. A crystalline silicon region is formed over a metal substrate by an LPCVD method, whereby whisker-like crystalline silicon which is a polycrystalline body and grows in the direction or the direction with {111} the plane as a twin boundary can be obtained. Whisker-like crystalline silicon grows while forming a twin crystal (introducing stacking faults), and an initial nucleus is provided so that the normal direction of the twin boundary is always included in the plane perpendicular to the growth direction of whisker-like crystalline silicon (in a transverse cross section). Such a material is used as a negative electrode active material of a lithium-ion secondary battery and for a photoelectric conversion device such as a solar battery.
摘要:
A photonic device (200) and method (100) of making the photonic device (200) employs preferential etching of grain boundaries of a polycrystalline semiconductor material layer (210). The method (100) includes growing (110) the polycrystalline layer (210) on a substrate (201). The polycrystalline layer includes a transition region (212) of variously oriented grains and a region (214) of columnar grain boundaries (215) adjacent to the transition region. The method further includes preferentially etching (120) the colunmar grain boundaries to provide tapered structures (220) of the semiconductor material that are continuous (217) with respective aligned grains (213) of the transition region. The tapered structures are predominantly single crystal. The method further includes forming (140) a conformal semiconductor junction (240) on the tapered structures and providing (160) first and second electrodes. The first electrode (201, 262) is adjacent to the transition region and the second electrode (260) is adjacent to a surface layer of the conformal semiconductor junction.
摘要:
Chemical vapor deposition processes utilize higher order silanes and germanium precursors as chemical precursors. The processes have high deposition rates yet produce more uniform films, both compositionally and in thickness, than films prepared using conventional chemical precursors. In preferred embodiments, trisilane is employed to deposit SiGe-containing films that are useful in the semiconductor industry in various applications such as transistor gate electrodes.
摘要:
A method for producing a solid layer material (42), comprising providing (70) a first layer (30); providing (72) a second liquid layer (32) on the first layer (30); providing (74) a third liquid layer (34) on the second liquid layer (32), wherein the third liquid layer has a melting point that is higher than a melting point of the second liquid layer, and wherein the second liquid layer is between the first and third layers; cooling (76) a surface of the third liquid layer to a temperature less than the melting point of the third liquid layer; forming (78) the solid layer from the third liquid layer while cooling the third layer liquid; and removing (80) the solid layer.
摘要:
A method and apparatus is provided for hydrogenation of a target, such as a polycrystalline silicon film on a glass substrate, by using an atomic hydrogen source. The target is subjected to intermittent exposure of the atomic hydrogen field of the source until at least one area of the target has been subjected to the hydrogen field for a predetermined minimum period of time. The processing area of the source established by its atomic hydrogen field is smaller than the target, and after the target is moved into the high temperature processing zone it is translated within the high temperature processing zone to intermittently process successive areas of the target until the entire target has been processed for a predetermined minimum period of time. After the entire target has been processed, the target is cooled to a predetermined lower temperature while still intermittently subjecting the target to atomic hydrogen.
摘要:
In a method of growing silicon (Si) using a reactor, a supercritical fluid including a silicon Si source and hydrogen flows in the reactor, and the Si source reacts with hydrogen. A base substrate of a solar cell may be formed with Si made using the method of growing silicon (Si). The supercritical fluid may be a fluid in which Si is not oxidized and may be, for example, a CO2 supercritical fluid with a pressure of about 60 to about 200 atm. The Si source may be TriChloroSilane (TCS) (SiCl3H) or SiH4.