Abstract:
In an electric connection box constituted by arranging a bus bar circuit board constituted by arranging a plurality of bus bars having at least two kinds of different potentials on an insulating board in a vertical direction, in bus bar arrangement in which the bus bar having low potential and the bus bar having high potential are contiguously installed in a horizontal direction, the bus bar having the low potential is arranged on an upper side of the bus bar having the high potential in the vertical direction.
Abstract:
A method for enhancing the solderability of a metallic surface is disclosed where the metallic surface is plated with an immersion or electroless silver plate prior to soldering, after which immersion silver plate is treated with an alkaline polymer coating comprising aqueous vinyl polymers, aqueous acrylic polymers, anti-fungal agents and a benzotriazole or benzimidazole compound to produce a deposit that is resistant to electromigration and that provides an anti-tarnish and anti-corrosion coating on the surface.
Abstract:
An apparatus and method therefor wherein instead of applying a high bias voltage 100 per cent of the time to leads susceptible to dendrite formation, the bias voltage is switched from a low bias voltage to a high voltage bias mode when the leads (19) are to be read or scanned by a microprocessor (14), and the bias voltage is then switched back to a low bias voltage mode when the lines are not being read, e.g., at other times, thereby greatly reducing the high bias nullonnull time and dramatically reducing the probability of dendrite formation. The reduction of high bias voltage nullonnull time is accomplished by programming the microprocessor (14) to switch the applicable input ports (16) to be output ports when the leads (19) are not to be read. As output ports, the output impedance and output voltage of the microprocessor are low as opposed to a high input impedance when the terminals are input terminals. When the leads are configured as output leads, the voltage division of the microprocessor low output impedance, in combination with a large valued pull-up resistor (12) which provides the high bias voltage when the leads are input leads, makes the voltage bias on the leads low, thus greatly reducing the probability of dendrite formation.
Abstract:
A conductive adhesive agent of the invention contains an elution preventing film-forming agent 4, which becomes reactive after electric continuity through a conductive particle 3 appeared in the conductive adhesive agent when a binder resin 2 is being hardened, to thereby form an elution preventing film 5 on a surface of the conductive particle 3. By using this conductive adhesive agent, the packaging structure is made migration resistant and sulfurization resistant.
Abstract:
An epoxy/clay nanocomposite suitable for use as matrix material for printed circuit boards is disclosed. The nanocomposite of the present invention comprises a layered clay material uniformly dispersed in an epoxy polymer matrix, wherein the clay material has been modified to an organoclay by ion exchange with (1) benzalkonium chloride and (2) dicyandiamide or tetraethylenepentamine. The epoxy/clay nanocomposites of the present invention have superior dimensional and thermal stability, and a lower hygroscopic property. The invention also includes the prepregs or circuit boards containing the epoxy/clay nanocomposite.
Abstract:
The present invention provides a conductive adhesive and a packaging structure that can keep moisture-proof reliability even when a multipurpose base metal electrode is used. A conductive adhesive according to the present invention includes first particles having a standard electrode potential that is equal to or higher than a standard electrode potential of silver, and second particles having a standard electrode potential lower than a standard electrode potential of silver. A metal compound coating having a potential higher than that of metal particles as the first particles can be formed on a surface of an electrode having a potential lower than that of the metal particles.
Abstract:
The present invention provides an at least partially coated fiber strand comprising a plurality of fibers having a resin compatible coating composition on at least a portion of a surface of at least one of the fibers, the resin compatible coating composition comprising: (a) a plurality of discrete particles comprising a silicate having a high affinity for metal ions; and (b) at least one film-forming material.
Abstract:
A conductive adhesive agent of the invention contains an elution preventing film-forming agent 4, which becomes reactive after electric continuity through a conductive particle 3 appeared in the conductive adhesive agent when a binder resin 2 is being hardened, to thereby form an elution preventing film 5 on a surface of the conductive particle 3. By using this conductive adhesive agent, the packaging structure is made migration resistant and sulfurization resistant.
Abstract:
The present invention provides a conductive adhesive and a packaging structure that can keep moisture-proof reliability even when a multipurpose base metal electrode is used. A conductive adhesive according to the present invention includes first particles having a standard electrode potential that is equal to or higher than a standard electrode potential of silver, and second particles having a standard electrode potential lower than a standard electrode potential of silver. A metal compound coating having a potential higher than that of metal particles as the first particles can be formed on a surface of an electrode having a potential lower than that of the metal particles.
Abstract:
A circuit board comprises wiring parts containing silver on a substrate, and a conductivity suppressing agent such as a potassium compound provided between the wiring parts, for preventing the silver attached on the substrate between the wiring parts from being conductive. Therefore, the insulation deterioration between the wiring parts can be suitably suppressed, which usually occurs when a voltage is applied between the wiring parts containing silver on the substrate under a high temperature atmosphere, irrespective of the presence or absence of water or water vapor. That is, the high temperature leakage phenomenon can be suitably suppressed.