Abstract:
A method and apparatus for heat treating waste materials including pyrolysing the waste materials in a first heating zone to produce pyrolysis gas containing dust and impurities, removing at least 90% of the dust from the pyrolysis gas, and burning the pyrolysis gas to produce flue gas. The flue gas produced is either immediately denitrogenated non-catalytically or first cooled and then catalytically denitrogenated. Following denitrogenation the flue gas is filtered to purify the gas.
Abstract:
The present invention provides a relatively compact self-powered, tunable waste conversion system and apparatus which has the advantage of highly robust operation which provides complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The system provides the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or by an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In a preferred embodiment of the invention, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The apparatus may additionally be employed with reduced or without further use of the gases generated by the conversion process. The apparatus may be employed as a self-powered or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production.
Abstract:
Methods and apparatus for high efficiency generation of electricity and low oxides of nitrogen (NO.sub.x) emissions are provided. The electricity is generated from combustion of hydrogen-rich gases produced in waste conversion units using ultra lean fuel to air ratios in the range of 0.4-0.7 relative to stoichiometric operation in internal combustion engine-generators or ultra lean operation in gas turbines to ensure minimal production of pollutants such as NO.sub.x. The ultra lean operation also increases the efficiency of the internal combustion engine. High compression ratios (r=12 to 15) can also be employed to further increase the efficiency of the internal combustion engine. Supplemental fuel, such as natural gas or diesel oil, may be added directly to the internal combustion engine-generator or gas turbine for combustion with the hydrogen-rich gases produced in waste conversion unit. In addition, supplemental fuel may be reformed into a hydrogen-rich gas in a plasma fuel converter and then introduced into the internal combustion engine-generator or a gas turbine for combustion along with supplemental fuel and the hydrogen-rich gases produced in waste conversion unit. The preferred embodiment of the waste conversion unit is a fully integrated tunable arc plasma-joule heated melter with a common molten pool and power supply circuits which can be operated simultaneously without detrimental interaction with one another. In this embodiment, the joule heated melter is capable of maintaining the material in a molten state with sufficient electrical conductivity to allow rapid restart of a transferred arc plasma.
Abstract:
Pyrolysis system and method wherein used batteries other than lead-acid batteries for reclamation and recovery of the constituents therein or environmentally safe disposal are placed in rail carts and moved on rails through an entry zone into a central heating zone of a pyrolysis chamber maintained under a negative pressure and then into an exit zone. A series of rail carts containing the batteries are sequentially transferred, one rail cart at a time, into the entry zone where the pressure is equalized with the central heating zone and the rail cart is transferred into the central heating zone, then the entry zone is returned to atmospheric pressure and another rail cart is moved into the entry zone and the procedure continued until the central heating zone is filled to capacity with rail carts containing the batteries, thereafter the entry zone and exit zone are equalized with the pressure in the central heating zone and a rail cart is transferred from the central heating zone to the exit zone while another rail cart is transferred into the central heating zone. Next the pressure in the entry zone and the exit zone are returned to atmospheric pressure and a rail cart is moved into the entry zone while the rail cart in the exit zone is moved out of the exit zone. The pyrolysis chamber is maintained under a negative pressure to recover the volatilized constituents of the batteries, while the solid constituents of the batteries after pyrolysis remain in the rail carts and are transferred to other processing.
Abstract:
A low-pollutant system for waste materials treatment includes a process chamber for converting organic components of the waste materials into a flammable gas and a two-stage vortex burning chamber for complete combustion of the flammable gas. The vortex burning chamber includes a first substantially-horizontal combustion chamber and a second substantially-vertical combustion chamber disposed at a right angle to each other and communicating therebetween. The first combustion chamber has an inlet portion for receiving the flammable combustion gas from the gas generator means for injecting primary air into the first combustion chamber, thereby forming a mixture of air and the flammable gas and thereby igniting the mixture for partial oxidation thereof. The first combustion chamber has a converging distal portion for discharging the partially-oxidized mixture of air and the flammable gas tangentially into the second combustion chamber, where the gas is mixed with the secondary air which is injected tangentially into the second combustion chamber, thereby substantially completely oxidizing the partially-oxidized mixture of air and the flammable gas. The second combustion chamber has an outlet portion for discharge of the waste gas resulting from the two-stage combustion of the flammable gas and the solids separated from the gas. The system has a pivoting grate with an angled flat roof with slots and paddles; and a coke bed for the cracking of pyrolysis of gases disposed under said roof.
Abstract:
High sulfur content fuel is combusted in the presence of oil shale containing significant amounts of calcium carbonate so that the sulfur and calcium carbonate oxidize and react to form calcium sulfate particulate which captures the sulfur and in the fuel and prevents its release to the atmosphere.
Abstract:
Earth solids which have been contaminated by volatile organic contaminants can be treated by a method and in an apparatus of this invention. The apparatus includes a rotary kiln, a baghouse filter, a high temperature incinerator and a recycle conduit to recycle a major portion by volume of the hot exit gases from the rotary kiln back to the gas inlet end of the rotary kiln. The remainder of the rotary kiln exit gases is delivered through a baghouse filter to remove gas-borne particulates and the substantially particulate-free kiln exit gas is discharged through a high temperature incinerator which converts unburned volatile organic contaminants to innocuous products of combustion. Recycling the kiln exit gas to the gas inlet end of the kiln permits use of a larger kiln with accompanying increased solids throughput by permitting use of smaller baghouse filters and a smaller incinerator. In the preferred embodiment the entire system preferably is mounted on a frame suitable for highway mobility.
Abstract:
Pulverulent solid sorption agent is injected into a stream of noxious-contaminant-containing gas subjected to intensive turbulence and then separated from the gas. The solid sorption agent is optionally reused until exhausted, or purified before reuse. Apparatus is provided for the process.
Abstract:
A method and apparatus are described for supplying municipal solid waste (MSW), and/or other types of solid waste comprising both organic waste material and inorganic waste material, into a plasma gasifier reactor (PGR) in which the solid waste is to be processed.
Abstract:
A process and system for the treatment of solid waste based on a temperature gradient generated by two distinct thermal sources, notably of a sequenced technological assembly, is able to process solid waste of any class, which operates through a reactor (1) having two chambers (2 and 3), each having a thermal source (4 and 5), where a thermal gradient is generated, followed by a heat exchanger (6) where gases are abruptly cooled and taken to a neutralizing tank (7), for then being directed to an activated charcoal filter (8), due to the action of a blower (9), before finally entering a burner (10) that works under electrical discharges, passing through a catalytic converter (11) and chimney (12) where it is extravasated into the completely inert atmosphere.