Abstract:
A node type of a plurality of distributed nodes to which a table to be added to a distributed database should be assigned can be identified by applying a set of placement rules defined for the table. The set of placement rules can also be applied to determine whether the table should be partitioned into more than one partition. A table group name associated with the table can be obtained and used in conjunction with the node type and determination of whether to partition the table to store the table in the distributed database on at least one node of the plurality of nodes as one or more partitions.
Abstract:
A node type of a plurality of distributed nodes to which a table to be added to a distributed database should be assigned can be identified by applying a set of placement rules defined for the table. The set of placement rules can also be applied to determine whether the table should be partitioned into more than one partition. A table group name associated with the table can be obtained and used in conjunction with the node type and determination of whether to partition the table to store the table in the distributed database on at least one node of the plurality of nodes as one or more partitions.
Abstract:
A device for powering an implant within a body of a subject from a location external to the subject, wherein the implant requires a threshold rate of power increase in order to operate in at least one mode, may include an antenna configured to wirelessly transmit energy to the implant. The device may also include a power storage unit configured to store energy from a power source incapable of delivering the threshold rate of power increase to enable the implant unit to operate in the at least one mode and a power release unit configured to release a pulse of energy from the power storage unit to the antenna after the power storage unit collects an amount of energy sufficient to enable the implant unit to operate in the at least one mode.
Abstract:
A method and device for determining the concentration of blood constituents, in particular haemoglobin, in a hose line of an extracorporeal blood circuit of an extracorporeal blood treatment apparatus, and an extracorporeal blood treatment apparatus with a device for determining the concentration of a blood constituent, are based on the correction of the influence of the blood flow rate of the blood flowing through the hose line on the determination of the concentration of the blood constituent. The device comprises a computing and evaluation unit configured such that a correction factor is ascertained for the influence of the blood flow rate on the determination of the concentration of the blood constituent. The concentration of the blood constituent is then determined based on a relationship describing the dependence of the concentration of the blood constituent on the intensity of the decoupled electromagnetic radiation, taking account of the correction factor.
Abstract:
A device for clamping a hose line for determining the concentration of a constituent of blood in a hose line, in particular in the hose line of an extracorporeal blood circuit of an extracorporeal blood treatment apparatus, includes a clamping unit with two receiving elements and an electric motor-driven actuation mechanism. Actuation mechanism is constituted such that, when a clamping force is applied, the first and second receiving element can be moved from a position releasing the hose line into a position clamping the hose line. Moreover, the device comprises an unlocking mechanism which is constituted such that, by actuating an unlocking element, the actuation mechanism in the position clamping the hose line can be decoupled from electromotive drive. Unlocking mechanism makes it possible for the receiving elements to be transferred easily and rapidly by hand from the position clamping the hose line into the position releasing the hose line.
Abstract:
A device for determining the concentration of a constituent of blood in a hose line, in particular in the hose line of an extracorporeal blood circuit of an extracorporeal blood treatment apparatus, includes a clamping unit having an actuation mechanism configured to apply a clamping force such that first and second receiving elements are moved towards one another from a first position releasing the hose line into a second position clamping the hose line, in which the drive of the actuation mechanism takes place with an electric motor, and a monitoring unit configured to detect a hose line inserted into the receiving elements. A method for detecting a hose line in a clamping unit of a device for determining the concentration of a blood constituent in the hose line is also described. Automation of the measurement of the blood parameters is thus possible.
Abstract:
Composite tubes may be fabricated by filament winding a layer of resin impregnated carbon fibre with a near-axial fibre orientation over a mandrel and over end-fittings. Bands of resin-impregnated fibres are then wound circumferentially around this near-axial layer in a position that coincides with a circumferential groove in the underlying end-fittings. The ends of the near-axial layer are folded back over the bands, resulting in a double layer of intact near-axial fibres locked into the groove on the end-fittings by the bands of intact circumferential fibres. Testing has shown this arrangement to be effective for introducing very high axial loads onto the composite tube.
Abstract:
Disclosed are a method and a device for feeding and/or discharging fluids in microreactor arrays through one or several fluid ducts that extend into each individual microreactor and can be individually controlled and regulated, in order to control, regulate, influence, and/or verify processes. The fed or discharged amounts of fluid are introduced into or discharged from the volume of the reaction liquid during a continuous shaking process and are evenly mixed as a result of the shaking process. The continuous shaking process causes sufficient mass transfer and thorough mixing of the reaction partners or fluids while the reaction is not limited or restricted by the mass transfer conditions.
Abstract:
A device may include a primary antenna configured to be located external to a subject and at least one processor in electrical communication with the primary antenna. The at least one processor may be configured to cause transmission of a primary signal from the primary antenna to an implantable device, wherein the implantable device includes at least one pair of modulation electrodes. The at least one processor may be further configured to adjust one or more characteristics of the primary signal to generate a sub-modulation control signal adapted so as not to cause a neuromuscular modulation inducing current at the at least one pair of modulation electrodes when received by the implantable device and to generate a modulation control signal adapted so as to cause a neuromuscular modulation inducing current at the at least one pair of modulation electrodes when received by the implantable device.
Abstract:
A device for the treatment of snoring is provided. The device may include a flexible substrate configured for removable attachment to a subject's skin, a primary antenna disposed on the flexible substrate, an interface configured to receive a feedback signal that varies based upon a breathing pattern of the subject; and at least one processing device. The processing device may be configured to analyze the feedback signal and determine whether the subject is snoring based on the analysis of the feedback signal, and if snoring is detected, cause a hypoglossal nerve modulation control signal to be applied to the primary antenna in order to wirelessly transmit the hypoglossal nerve modulation control signal to a secondary antenna associated with an implant unit configured for location in a body of the subject.