摘要:
A semiconductor device comprises a carrier including an adhesive disposed over the carrier. The semiconductor device further comprises a semiconductor wafer including a plurality of semiconductor die separated by a non-active region. A plurality of bumps is formed over the semiconductor die. The semiconductor wafer is mounted to the carrier with the adhesive disposed around the plurality of bumps. Irradiated energy is applied to the non-active region to form a modified region within the non-active region. The semiconductor wafer is singulated along the modified region to separate the semiconductor die. The semiconductor wafer is singulated along the modified region by applying stress to the semiconductor wafer. The adhesive is removed from around the plurality of bumps after singulating the semiconductor wafer. The semiconductor wafer includes a plurality of semiconductor die comprising through silicon vias. The modified region optionally includes a plurality of vertically stacked modified regions.
摘要:
A semiconductor device comprises a carrier including an adhesive disposed over the carrier. The semiconductor device further comprises a semiconductor wafer including a plurality of semiconductor die separated by a non-active region. A plurality of bumps is formed over the semiconductor die. The semiconductor wafer is mounted to the carrier with the adhesive disposed around the plurality of bumps. Irradiated energy is applied to the non-active region to form a modified region within the non-active region. The semiconductor wafer is singulated along the modified region to separate the semiconductor die. The semiconductor wafer is singulated along the modified region by applying stress to the semiconductor wafer. The adhesive is removed from around the plurality of bumps after singulating the semiconductor wafer. The semiconductor wafer includes a plurality of semiconductor die comprising through silicon vias. The modified region optionally includes a plurality of vertically stacked modified regions.
摘要:
A semiconductor device has a first semiconductor die including an active region formed on a surface of the first semiconductor die. The active region of the first semiconductor die can include a sensor. An encapsulant is deposited over the first semiconductor die. A conductive layer is formed over the encapsulant and first semiconductor die. An insulating layer can be formed over the first semiconductor die. An opening is formed in the insulating layer over the active region. A transmissive layer is formed over the first semiconductor die including the active region. The transmissive layer includes an optical dielectric material or an optical transparent or translucent material. The active region is responsive to an external stimulus passing through the transmissive layer. A plurality of bumps is formed through the encapsulant and electrically connected to the conductive layer. A second semiconductor die is disposed adjacent to the first semiconductor die.
摘要:
An integrated circuit package system includes: providing a flexible circuit substrate having a fold; mounting an integrated circuit or an integrated circuit package over the flexible circuit substrate and connected to the flexible circuit substrate with interconnects; and encapsulating the integrated circuit or integrated circuit package with a recessed encapsulation having a first level and a second level, the second level having the flexible circuit substrate folded thereover.
摘要:
An integrated circuit package system includes: providing a flexible circuit substrate; mounting an integrated circuit or an integrated circuit package over the flexible circuit substrate and connected to the flexible circuit substrate with interconnects; and encapsulating the integrated circuit or integrated circuit package with a mounded encapsulation having a first level and a second level, the second level having the flexible circuit substrate folded thereover.
摘要:
An integrated circuit package system includes a base substrate, attaching a base die over the base substrate, attaching an integrated interposer having interposer circuit devices, over the base die, and forming a package system encapsulant having an encapsulant cavity over the integrated interposer on a side opposite the base die.
摘要:
Stacked package assemblies include first and second stacked packages, each having at least one die affixed to, and electrically interconnected with, a die attach side of the package substrate. One package is inverted in relation to the other, that is, the die attach sides of the package substrates face one another, and the “land” sides of the substrates face away from one another. Z-interconnection of the packages is by wire bonds connecting the first and second package substrates. The assembly is encapsulated in such a way that both the second package substrate (one side of the assembly) and a portion of the first package substrate (on the opposite side of the assembly) are exposed, so that second level interconnection and interconnection with additional components may be made. One or more additional components may be stacked over the land side of the first package substrate.
摘要:
The present invention provides a system for 3D package stacking system, comprising providing a substrate, attaching a ball grid array package, in an inverted position, to the substrate, forming a lower package, the lower package having the ball grid array package and the substrate encapsulated by a molding compound and attaching a second integrated circuit package over the lower package.
摘要:
A method for fabricating a stacked semiconductor package includes providing a substrate and mounting a first semiconductor device on the substrate. An interposer is supported above the first semiconductor device opposite the substrate. The interposer is electrically connected to the substrate. A second semiconductor device is then mounted on the interposer.
摘要:
Semiconductor devices and methods of manufacturing such devices are disclosed. In one embodiment of this invention, a semiconductor chip is bonded to a first surface of a substrate. The substrate extends beyond the edge of the chip. Signal input/output pads on the chip are juxtaposed with an opening in the substrate. A molded support is formed on the portion of the first surface of the substrate that extends beyond between the sidewall of the edge of the chip. The support prevents bending of the substrate, and allows solder balls to be formed on the entire area of a second surface of the substrate opposite the first surface of the substrate. A heat dissipating plate is mounted on a surface of the chip opposite the substrate. The heat dissipating plate is attached to the support.