摘要:
A high-density power module package wherein the circuits and a part of chips of the power module are formed on respective substrates such that the circuit patterns are not influenced by the chips. Accordingly, the density of the circuit can be improved so as to save the required area of substrate and production cost.
摘要:
A chip package comprising a substrate, a lead frame, a chip, a set of bonded wires, a heat sink and a packaging material is provided. The substrate has a first metallic layer, a second metallic layer and a conductor. The first metallic layer is formed on a first surface of the substrate and the second metallic layer is formed on a second surface of the substrate. The conductor is formed on a lateral surface of the substrate. The first metallic layer is electrically connected to the second metallic layer through the conductor. The lead frame is attached on the first surface of the substrate and is electrically connected to the first metallic layer. The chip has a back surface attached to the lead frame or the first surface of the substrate. The chip is connected with the lead frame through the bonding wires. The heat sink is attached on the second surface of the substrate and electrically connected with the second metallic layer. The packaging material encapsulates the chip, the bonded wires and the lead frame.
摘要:
A high density power module package where in the circuits and a part of chips of the power module are formed on respective substrates such that the circuit patterns are not influenced by the chips. Accordingly, the density of the circuit can be improved so as to save the required area of substrate and production cost.
摘要:
A method for forming a conductive structure is disclosed, the method comprising the steps of: forming a metallic frame having a plurality of metal parts separated from each other; forming an insulating layer on the top surface of the plurality of metal parts; and forming a conductive pattern layer on the insulating layer for making electrical connections with at least one portion of the plurality of metal parts.
摘要:
A power conversion module includes a circuit carrier board, a semiconductor module and an inductor module. The circuit carrier board has plural bonding pads. The semiconductor module is disposed on a first surface of the circuit carrier board. The inductor module has plural pins. The pins are extended from the inductor module along a first direction and connected with corresponding bonding pads on the circuit carrier board, so that a receptacle is defined between the inductor module and the circuit carrier board for accommodating the semiconductor module.
摘要:
A chip package structure including a substrate, at least one chip, a plurality of leads, a heat dissipation device, a molding compound, and at least one insulating sheet is provided. The chip is disposed on the substrate. The leads are electrically connected to the substrate. The molding compound having a top surface encapsulates the chip, the substrate, and a portion of the leads. The heat dissipation device is disposed on the top surface of the molding compound. The insulating sheet disposed between the heat dissipation device and at least one of the leads has a bending line dividing the insulating sheet into a main body disposed on the molding compound and a bending portion extending from the main body.
摘要:
An electronic package structure including a first carrier, at least one first electronic element, at least one second electronic element, and an encapsulant is provided. The first carrier has a first carrying surface and a second carrying surface opposite to the first carrying surface. The first electronic element is disposed on the first carrying surface and electrically connected to the first carrier. The second electronic element is disposed on the second carrying surface and electrically connected to the first carrier. The encapsulant at least covers the first electronic element, the second electronic element, and a part of the first carrier. The space utilization rate of the first carrier of the electronic package structure is higher.
摘要:
The present invention provides a package device for reducing the electromagnetic/radio frequency interference, which includes a first substrate with a shielding structure on the under surface of the first substrate, and an insulating layer on the shielding structure. The first substrate includes a through hole that is filled with the conductor therein. A plurality of lead-frames located on the bottom surface of the first substrate. A second substrate located above between the two lead-frames. Then, the molding compound encapsulated to cover the above structures to form a package device. Therefore, the shielding path of the package device is constructed of the plurality of lead-frames, the conductor within the first substrate, the shielding structure, and the grounded to discharge the electromagnetic/radio frequency out of the package device, thus, the electromagnetic/radio frequency interference for the package device can be reduced.
摘要:
A power-supply module includes at least one power-supply component, an inductor and a package. The inductor is disposed over the at least one power-supply components, and the at least a power-supply component and the inductor are disposed within the package. Besides, the power-supply module further comprises a printed circuit board, and the at least one power-supply component and the inductor are mounted to the printed circuit board. Moreover, the inductor comprises a plurality of leads that support the inductor over the at least one power-supply component.
摘要:
The present invention discloses an electronic package structure. The body has a top surface with a cavity thereon, the first conductive element is disposed in the cavity, and the second conductive element is disposed in the body. The first external electrode electrically connected to the first conductive element and the second external electrode electrically connected to the second conductive element are both disposed on the top surface of the body or a first surface formed by the top surface of the encapsulation compound and the exposed portions of the top surface of the body which are not covered by the encapsulation compound.