Abstract:
A method for manufacturing a substrate having a cavity which includes forming a barrier around a predetermined area where the cavity is to be formed on a copper foil laminated master, an internal circuit formed in the copper foil laminated master; coating a thermosetting material in the area where the cavity is to be formed; laminating a dielectric layer and a copper foil layer on the copper foil laminated master, on which the thermosetting material is coated; pressing the laminated dielectric layer and copper foil layer using a press plate, on which a protruded part is formed in an area corresponding to the area where the cavity is to be formed; forming an external circuit pattern in the upper part of the laminated dielectric layer; and dissolving the coated thermosetting material using a solvent and forming the cavity.
Abstract:
Disclosed is a method of manufacturing a printed circuit board having a landless via hole. Specifically, this invention provides a method of manufacturing a printed circuit board having a landless via hole without the upper land of a via hole using a photoresist (P-LPR) which is loaded in the via hole. Therefore, in this invention, since a circuit pattern is formed using only copper of a copper clad laminate, the width thereof is minimized, thus easily realizing a fine circuit pattern. Further, the landless via hole structure is applied, resulting in a highly dense circuit pattern.
Abstract:
A carrier member for transmitting circuits, which is a component of a coreless printed circuit board having circuit patterns embedded therein, and which can be used to provide a high-density and highly reliable printed circuit board by forming protrusions only on the lower ends of the circuit patterns, a coreless printed circuit board using the carrier member, and methods of manufacturing the carrier member and the coreless printed circuit board.
Abstract:
A method of fabricating a multilayer printed circuit board, which enables the formation of a micro circuit able to be realized through a semi-additive process using the CTE and rigidity of a metal carrier on a thin substrate which is difficult to convey.
Abstract:
Provided is a ball grid array substrate, a semiconductor chip package, and a method of manufacturing the same. The ball grid array substrate includes an insulating layer having a first surface providing a mounting region for a semiconductor chip, a second surface opposing the first surface, and an opening connecting the second surface with the mounting region of the semiconductor chip, and a circuit pattern buried in the second surface. Since the ball grid array substrate is manufactured by a method of stacking two insulating layers, existing devices can be used, and the ball grid array substrate can be manufactured as an ultra thin plate. In addition, since the circuit pattern is buried in the insulating layer, a high-density circuit pattern can be formed.
Abstract:
Disclosed is a method of fabricating a multilayer printed circuit board, which enables the formation of a micro circuit able to be realized through a semi-additive process using the CTE and rigidity of a metal carrier on a thin substrate which is difficult to convey.
Abstract:
Disclosed herein is a carrier member for transmitting circuits, which is a component of a coreless printed circuit board having circuit patterns embedded therein, and which can be used to provide a high-density and highly reliable printed circuit board by forming protrusions only on the lower ends of the circuit patterns, a coreless printed circuit board using the carrier member, and methods of manufacturing the carrier member and the coreless printed circuit board.
Abstract:
Provided is a ball grid array substrate, a semiconductor chip package, and a method of manufacturing the same. The ball grid array substrate includes an insulating layer having a first surface providing a mounting region for a semiconductor chip, a second surface opposing the first surface, and an opening connecting the second surface with the mounting region of the semiconductor chip, and a circuit pattern buried in the second surface. Since the ball grid array substrate is manufactured by a method of stacking two insulating layers, existing devices can be used, and the ball grid array substrate can be manufactured as an ultra thin plate. In addition, since the circuit pattern is buried in the insulating layer, a high-density circuit pattern can be formed.
Abstract:
Disclosed is a method of fabricating a multilayer printed circuit board, which enables the formation of a micro circuit able to be realized through a semi-additive process using the CTE and rigidity of a metal carrier on a thin substrate which is difficult to convey.
Abstract:
A communication method for at least one mobile station that includes a target mobile station that performs a Cooperative Multi-Point (CoMP) communication with at least two base stations, is provided. The communication method includes determining a beamforming vector used by the at least two base stations based on channel vectors and at least one channel matrix such that a signal-to-leakage-plus-noise-ratio (SLNR) for a target antenna from among antennas of a target mobile station is maximized. A Cholesky factorization may be used to determine an optimal beamforming vector with a low complexity.