摘要:
Methods and associated structures of forming a microelectronic structure are described. Those methods may comprise forming a doping material on an overburden region of a conductive structure, diffusing a portion of the doping material into a portion of the conductive structure, and then removing the overburden region.
摘要:
Methods for making copper (Cu) interconnects in semiconductor devices for interconnect dimensions less than 50 nm are described. The processes form Cu interconnects using a sequence of barrier layer, liner layer, and Cu deposition layer depositions, followed by a thermally assisted Cu reflow of the Cu deposition layer, and then a chemical mechanical polish (CMP) to removed excess portions of the reflowed Cu. The liner layer comprises noble metals such as Ru, Ir, Os, Rh, Re, Pd, Pt, and Au. Such processes avoids the formation of voids in copper interconnects with dimensions less than 50 nm.
摘要:
Methods of fabricating interconnect structures utilizing barrier material layers formed with an electroless deposition technique utilizing a coupling agent complexed with a catalytic metal and structures formed thereby. The fabrication fundamentally comprises providing a dielectric material layer having an opening extending into the dielectric material from a first surface thereof, bonding the coupling agent to the dielectric material within the opening, and electrolessly depositing the barrier material layer, wherein the electrolessly deposited barrier material layer material adheres to the catalytic metal of the coupling agent.
摘要:
A method for forming a semiconductor device is disclosed wherein atomic layer deposition (ALD) precursor species and/or by-product absorbed by an ILD are outgassed and/or neutralized prior to subsequently patterning the semiconductor device, thereby improving the ability to accurately define subsequently formed interconnect structures in the ILD.
摘要:
Processes of forming an insulated wire into an interlayer dielectric layer (ILD) of a back-end metallization includes thermally treating a metallic barrier precursor under conditions to cause at least one alloying element in the barrier precursor to form a dielectric barrier between the wire and the ILD. The dielectric barrier is therefore a self-forming, self-aligned barrier. Thermal processing is done under conditions to cause the at least one alloying element to migrate from a zone of higher concentration thereof to a zone of lower concentration thereof to further form the dielectric barrier. Various apparatus are made by the process.
摘要:
Methods, techniques, and structures relating to die packaging. In one exemplary implementation, a die package interconnect structure includes a semiconductor substrate and a first conducting layer in contact with the semiconductor substrate. The first conducting layer may include a base layer metal. The base layer metal may include Cu. The exemplary implementation may also include a diffusion barrier in contact with the first conducting layer and a wetting layer on top of the diffusion barrier. A bump layer may reside on top of the wetting layer, in which the bump layer may include Sn, and Sn may be electroplated. The diffusion barrier may be electroless and may be adapted to prevent Cu and Sn from diffusing through the diffusion barrier. Furthermore, the diffusion barrier may be further adapted to suppress a whisker-type formation in the bump layer.
摘要:
One embodiment of the invention involves a refractory layer formed over a substrate during rapid thermal processing in which ambient hydrogen is used in a thermal processing chamber. Rapid thermal processing may occur at a temperature approximately in the range of 350° C. to approximately 550° C.
摘要:
A process for etching a tungsten layer formed on a semiconductor substrate is described. The etch is carried out in a parallel plate plasma reactor. The etchant gases include nitrogen trifluoride (NF.sub.3) and argon (Ar). The use of NF.sub.3 in a tungsten etching process reduces the build-up of polymers or sulfur residues on the electrode as occurs with processes utilizing sulfur or carbon fluorides as etchant gases. The process has a sufficiently high etch rate for volume production. The NF.sub.3 -Ar etch process can be used to etchback a blanket layer of deposited tungsten to form tungsten via plugs in contact areas of the device. In the via plug process, reduced micro-loading effect, that is, the tendency of some plugs to be etched away before the complete etching of the blanket layer, has been achieved. The etching of tunsten with NF.sub.3 -Ar process can be preformed in one or more steps in process utilizing several etching steps. Additionally, a tungsten etch incorporating one or more NF.sub.3 -Ar steps and one or more steps utilizing etchants such as SF.sub.6, Cl.sub.2, O.sub.2, CF.sub.4, CBrF.sub.3, CF.sub.3 Cl, CF.sub.2 Cl.sub.2 or similar etchants can be used to optimize etch rate and uniformity while obtaining the benefit of reduced residue build-up.
摘要:
Methods, techniques, and structures relating to die packaging. In one exemplary implementation, a die package interconnect structure includes a semiconductor substrate and a first conducting layer in contact with the semiconductor substrate. The first conducting layer may include a base layer metal. The base layer metal may include Cu. The exemplary implementation may also include a diffusion barrier in contact with the first conducting layer and a wetting layer on top of the diffusion barrier. A bump layer may reside on top of the wetting layer, in which the bump layer may include Sn, and Sn may be electroplated. The diffusion barrier may be electroless and may be adapted to prevent Cu and Sn from diffusing through the diffusion barrier. Furthermore, the diffusion barrier may be further adapted to suppress a whisker-type formation in the bump layer.
摘要:
A spacer is adjacent to a conductive line. Vias that do not completely land on the conductive line land on the spacer and do not punch through into a volume below the spacer.