摘要:
A method for operating a substrate processing system includes delivering precursor gas to a chamber using a showerhead that includes a head portion and a stem portion. The head portion includes an upper surface, a sidewall, a lower planar surface, and a cylindrical cavity and extends radially outwardly from one end of the stem portion towards sidewalls of the chamber. The showerhead is connected, using a collar, to an upper surface of the chamber. The collar is arranged around the stem portion. Process gas is flowed into the cylindrical cavity via the stem portion and through a plurality of holes in the lower planar surface to distribute the process gas into the chamber. A purge gas is supplied through slots of the collar into a cavity defined between the head portion and an upper surface of the chamber.
摘要:
A wafer is positioned on a wafer support apparatus beneath an electrode such that a plasma generation region exists between the wafer and the electrode. Radiofrequency power is supplied to the electrode to generate a plasma within the plasma generation region. Optical emissions are collected from the plasma using one or more optical emission collection devices, such as optical fibers, charge coupled device cameras, photodiodes, or the like. The collected optical emissions are analyzed to determine whether or not an optical signature of a plasma instability exists in the collected optical emissions. Upon determining that the optical signature of the plasma instability does exist in the collected optical emissions, at least one plasma generation parameter is adjusted to mitigate formation of the plasma instability.
摘要:
A process chamber for detecting formation of plasma during a semiconductor wafer processing, includes an upper electrode, for providing a gas chemistry to the process chamber. The upper electrode is connected to a radio frequency (RF) power source through a match network to provide RF power to the wafer cavity to generate a plasma. The process chamber also includes a lower electrode for receiving and supporting the semiconductor wafer during the deposition process. The lower electrode is disposed in the process chamber so as to define a wafer cavity between a surface of the upper electrode and a top surface of the lower electrode. The lower electrode is electrically grounded. A coil sensor is disposed at a base of the lower electrode that extends outside the process chamber. The coil sensor substantially surrounds the base of the lower electrode. The coil sensor is configured to measure characteristics of RF current conducting through the wafer cavity. The characteristics of the RF current measured by the coil sensor are used to confirm presence of plasma within the wafer cavity.
摘要:
A system includes an electrode. The electrode includes a showerhead having a first stem portion and a head portion. A plurality of dielectric layers is vertically stacked between the electrode and a first surface of a conducting structure. The plurality of dielectric layers includes M dielectric layers arranged adjacent to the head portion and P dielectric portions arranged around the first stem portion. The plurality of dielectric layers defines a first gap between the electrode and one of the plurality of dielectric layers, a second gap between adjacent ones of the plurality of dielectric layers, and a third gap between a last one of the plurality of dielectric layers and the first surface. A number of the plurality of dielectric layers and sizes of the first gap, the second gap, and the third gap are selected to prevent parasitic plasma between the first surface and the electrode.
摘要:
A wafer is positioned on a wafer support apparatus beneath an electrode such that a plasma generation region exists between the wafer and the electrode. Radiofrequency signals of a first signal frequency are supplied to the plasma generation region to generate a plasma within the plasma generation region. Formation of a plasma instability is detected within the plasma based on supply of the radiofrequency signals of the first signal frequency. After detecting formation of the plasma instability, radiofrequency signals of a second signal frequency are supplied to the plasma generation region in lieu of the radiofrequency signals of the first signal frequency to generate the plasma. The second signal frequency is greater than the first signal frequency and is set to cause a reduction in ion energy within the plasma and a corresponding reduction in secondary electron emission from the wafer caused by ion interaction with the wafer.
摘要:
Systems and methods are disclosed for plasma enabled film deposition on a wafer in which a plasma is generated using radiofrequency signals of multiple frequencies and in which a phase angle relationship is controlled between the radiofrequency signals of multiple frequencies. In the system, a pedestal is provided to support the wafer. A plasma generation region is formed above the pedestal. An electrode is disposed in proximity to the plasma generation region to provide for transmission of radiofrequency signals into the plasma generation region. A radiofrequency power supply provides multiple radiofrequency signals of different frequencies to the electrode. A lowest of the different frequencies is a base frequency, and each of the different frequencies that is greater than the base frequency is an even harmonic of the base frequency. The radiofrequency power supply provides for variable control of the phase angle relationship between each of the multiple radiofrequency signals.
摘要:
Systems and methods are disclosed for plasma enabled film deposition on a wafer in which a plasma is generated using radiofrequency signals of multiple frequencies and in which a phase angle relationship is controlled between the radiofrequency signals of multiple frequencies. In the system, a pedestal is provided to support the wafer. A plasma generation region is formed above the pedestal. An electrode is disposed in proximity to the plasma generation region to provide for transmission of radiofrequency signals into the plasma generation region. A radiofrequency power supply provides multiple radiofrequency signals of different frequencies to the electrode. A lowest of the different frequencies is a base frequency, and each of the different frequencies that is greater than the base frequency is an even harmonic of the base frequency. The radiofrequency power supply provides for variable control of the phase angle relationship between each of the multiple radiofrequency signals.
摘要:
A system includes a probe arranged in a plasma processing chamber of the plasma processing system. A capacitor has one end connected to the probe. An RF source is configured to selectively supply an RF signal including RF bursts to another end of the capacitor. A plasma characterizing computing device is configured to collect a set of process data from the probe by measuring current supplied to the capacitor and voltage at the capacitor; identify a relevancy range for the set of process data, wherein the relevancy range includes process data collected after the capacitor begins discharging and before the capacitor is fully discharged; determine a set of seed values based on the process data in the relevancy range; and employ the relevancy range and the set of seed values as initial values for curve fitting corresponding to the one of the RF bursts to reduce a number of curve-fitting iterations.
摘要:
A substrate processing system includes: a processing chamber defining a reaction volume; a showerhead including: a stem portion having one end connected adjacent to an upper surface of the processing chamber; and a base portion connected to an opposite end of the stem portion and extending radially outwardly from the stem portion, where the showerhead is configured to introduce gas into the reaction volume; a plasma generator configured to selectively generate RF plasma in the reaction volume; and a collar arranged around the stem portion of the showerhead between the base portion of the showerhead and the upper surface of the processing chamber. The collar includes one or more holes to supply purge gas from an inner cavity of the collar to between the base portion of the showerhead and the upper surface of the processing chamber.
摘要:
A process chamber for detecting formation of plasma during a semiconductor wafer processing, includes an upper electrode, for providing a gas chemistry to the process chamber. The upper electrode is connected to a radio frequency (RF) power source through a match network to provide RF power to the wafer cavity to generate a plasma. The process chamber also includes a lower electrode for receiving and supporting the semiconductor wafer during the deposition process. The lower electrode is disposed in the process chamber so as to define a wafer cavity between a surface of the upper electrode and a top surface of the lower electrode. The lower electrode is electrically grounded. A coil sensor is disposed at a base of the lower electrode that extends outside the process chamber. The coil sensor substantially surrounds the base of the lower electrode. The coil sensor is configured to measure characteristics of RF current conducting through the wafer cavity. The characteristics of the RF current measured by the coil sensor are used to confirm presence of plasma within the wafer cavity.