摘要:
A self-addressable, self-assembling microelectronic device is designed and fabricated to actively carry out and control multi-step and multiplex molecular biological reactions in microscopic formats. These reactions include nucleic acid hybridizations, antibody/antigen reactions, diagnostics, and biopolymer synthesis. The device can be fabricated using both microlithographic and micro-machining techniques. The device can electronically control the transport and attachment of specific binding entities to specific micro-locations. The specific binding entities include molecular biological molecules such as nucleic acids and polypeptides. The device can subsequently control the transport and reaction of analytes or reactants at the addressed specific micro-locations. The device is able to concentrate analytes and reactants, remove non-specifically bound molecules, provide stringency control for DNA hybridization reactions, and improve the detection of analytes. The device can be electronically replicated.
摘要:
A method for analyzing nucleic acid obtained from a cell sample on a platform is described. A platform having a cell selector, a nucleic acid selector, and an array of microlocations, wherein at least one microlocation has an associated capture sequence, is provided. The cell selector is contacted with a cell sample, wherein a portion of the cells remain associated with the cell selector. At least a portion of cells associated with the cell selector are lysed to release a nucleic acid sample. The nucleic acid selector is then contacted with the nucleic acid sample, such that a portion of the nucleic acid sample remains associated with the nucleic acid selector. The associated nucleic acid sample is then released from the nucleic acid selector and then is contacted with the array of microlocations, such that at least a portion of the released nucleic acid sample hybridizes with the capture sequence.
摘要:
A method for analyzing nucleic acid obtained from a cell sample on a platform is described. A platform having a cell selector, a nucleic acid selector, and an array of microlocations, wherein at least one microlocation has an associated capture sequence, is provided. The cell selector is contacted with a cell sample, wherein a portion of the cells remain associated with the cell selector. At least a portion of cells associated with the cell selector are lysed to release a nucleic acid sample. The nucleic acid selector is then contacted with the nucleic acid sample, such that a portion of the nucleic acid sample remains associated with the nucleic acid selector. The associated nucleic acid sample is then released from the nucleic acid selector and then is contacted with the array of microlocations, such that at least a portion of the released nucleic acid sample hybridizes with the capture sequence.
摘要:
A self-addressable, self-assembling microelectronic device is designed and fabricated to actively carry out and control multi-step and multiplex molecular biological reactions in microscopic formats. These reactions include nucleic acid hybridizations, antibody/antigen reactions, diagnostics, and biopolymer synthesis. The device can be fabricated using both microlithographic and micro-machining techniques. The device can electronically control the transport and attachment of specific binding entities to specific micro-locations. The specific binding entities include molecular biological molecules such as nucleic acids and polypeptides. The device can subsequently control the transport and reaction of analytes or reactants at the addressed specific micro-locations. The device is able to concentrate analytes and reactants, remove non-specifically bound molecules, provide stringency control for DNA hybridization reactions, and improve the detection of analytes. The device can be electronically replicated.
摘要:
A self-addressable, self-assembling microelectronic device is designed and fabricated to actively carry out and control multi-step and multiplex molecular biological reactions in microscopic formats. These reactions include nucleic acid hybridizations, antibody/antigen reactions, diagnostics, and biopolymer synthesis. The device can be fabricated using both microlithographic and micro-machining techniques. The device can electronically control the transport and attachment of specific binding entities to specific microlocations. The specific binding entities include molecular biological molecules such as nucleic acids and polypeptides. The device can subsequently control the transport and reaction of analytes or reactants at the addressed specific microlocations. The device is able to concentrate analytes and reactants, remove non-specifically bound molecules, provide stringency control for DNA hybridization reactions, and improve the detection of analytes. The device can be electronically replicated.
摘要:
Methods for electronic perturbation of fluorescence, chemilluminescence and other emissive materials provide for molecular biological analysis. In a preferred method for hybridization analysis of a sample, an electronic stringency control device is used to perform the steps of: providing the sample, a first probe with a fluorescent label and a second probe with a label under hybridization conditions on the electronic stringency control device, forming a hybridization product, subjecting the hybridization product to an electric field force, monitoring the fluorescence from the hybridization product, and analyzing the fluorescent signal. The label preferably serves as a quencher for the fluorescent label. In yet another aspect of this invention, a method for achieving electronic fluorescence perturbation on an electronic stringency control device comprising the steps of: locating a first polynucleotide and a second polynucleotide adjacent the electronic stringency control device, the first polynucleotide and second polynucleotide being complementary over at least a portion of their lengths and forming a hybridization product, the hybridization product having an associated environmental sensitive emission label, subjecting the hybridization product and label to a varying electrophoretic force, monitoring the emission from the label, and analyzing the monitored emission to determine the electronic fluorescence perturbation effect. In yet another aspect of this invention, a method is provided for electronic perturbation catalysis of substrate molecules on an electronic control device containing at least one microlocation comprising the steps of: immobilizing on the microlocation an arrangement of one or more reactive groups, exposing the reactive groups to a solution containing the substrate molecules of interest, and applying an electronic pulsing sequence which causes charge separation between the reactive groups to produce a catalytic reaction on the substrate molecules.
摘要:
A self-addressable, self-assembling microelectronic device is designed and fabricated to actively carry out and control multi-step and multiplex molecular biological reactions in microscopic formats. These reactions include nucleic acid hybridizations, antibody/antigen reactions, diagnostics, and biopolymer synthesis. The device can be fabricated using both microlithographic and micro-machining techniques. The device can electronically control the transport and attachment of specific binding entities to specific microlocations. The specific binding entities include molecular biological molecules such as nucleic acids and polypeptides. The device can subsequently control the transport and reaction of analytes or reactants at the addressed specific microlocations. The device is able to concentrate analytes and reactants, remove non-specifically bound molecules, provide stringency control for DNA hybridization reactions, and improve the detection of analytes. The device can be electronically replicated.
摘要:
A method for electronically stabilizing hybridization of nucleic acids bound at a test site of a microelectronic device is described. First and second negatively charged nucleic acids are provided, the second nucleic acid being bound to the test site. A zwitterionic buffer having a conductance of less than 100 mS/cm is applied to the microelectronic device. A current is applied to the test site to positively bias the test site, such that the first negatively charged nucleic acid is transported to the positively biased test site having the bound the second negatively charged nucleic acid. At the test site, the first and second negatively charged nucleic acids hybridize. The zwitterionic buffer acquires a net positive charge under influence of the current, such that the positively charged zwitterionic buffer stabilizes the hybridization by reducing the repulsion between the first and second negatively charged nucleic acids.
摘要翻译:描述了用于电子稳定在微电子器件的测试位点处结合的核酸杂交的方法。 提供第一和第二带负电荷的核酸,第二核酸与测试部位结合。 将具有小于100mS / cm 2的电导的两性离子缓冲液施加到微电子器件。 将电流施加到测试部位以使测试部位正偏置,使得将第一带负电荷的核酸转运到具有结合第二带负电荷核酸的正偏压测试位点。 在测试位点,第一和第二带负电荷的核酸杂交。 两性离子缓冲液在电流影响下获得净正电荷,使得带正电的两性离子缓冲液通过降低第一和第二带负电的核酸之间的排斥来稳定杂交。
摘要:
A self-addressable, self-assembling microelectronic device is designed and fabricated to actively carry out and control multi-step and multiplex molecular biological reactions in microscopic formats. These reactions include nucleic acid hybridization, antibody/antigen reaction, diagnostics, and biopolymer synthesis. The device can be fabricated using both microlithographic and micro-machining techniques. The device can electronically control the transport and attachment of specific binding entities to specific micro-locations. The specific binding entities include molecular biological molecules such as nucleic acids and polypeptides. The device can subsequently control the transport and reaction of analytes or reactants at the addressed specific micro-locations. The device is able to concentrate analytes and reactants, remove non-specifically bound molecules, provide stringency control for DNA hybridization reactions, and improve the detection of analytes. The device can be electronically replicated.
摘要:
A system for performing molecular biological diagnosis, analysis and multi-step and multiplex reactions utilizes a self-addressable, self-assembling microelectronic system for actively carrying out controlled reactions in microscopic formats. These reactions include most molecular biological procedures, such as nucleic acid hybridization, antibody/antigen reaction, and clinical diagnostics. Multi-step combinatorial biopolymer synthesis may be performed. A controller interfaces with a user via input/output devices, preferably including a graphical display. Independent electronic control is achieved for the individual microlocations. In the preferred embodiment, the controller interfaces with a power supply and interface, the interface providing selective connection to the microlocations, polarity reversal, and optionally selective potential or current levels to individual electrodes. A system for performing sample preparation, hybridization and detection and data analysis integrates multiple steps within a combined system. Charged materials are transported preferably via free field electrophoresis. DNA complexity reduction is achieved preferably by binding of DNA to a support, followed by cleaving unbound materials, such as by restriction enzymes, followed by transport of the cleaved DNA fragments. Active, programmable matrix devices are formed in a variety of formats, including a square matrix pattern with fanned out electrical connections, an array having electrical connections and optionally optical connections from beneath the specific microlocations. A highly automated DNA diagnostic system results.