Abstract:
A compact and refined chip resistor, with which a plurality of types of required resistance values can be accommodated readily with the same design structure, was desired. The chip resistor is arranged to have a resistor network on a substrate. The resistor network includes a plurality of resistor bodies arrayed in a matrix and having an equal resistance value. A plurality of types of resistance units are respectively arranged by one or a plurality of the resistor bodies being connected electrically. The plurality of types of resistance units are connected in a predetermined mode using connection conductor films and fuse films. By selectively fusing a fuse film, a resistance unit can be electrically incorporated into the resistor network or electrically separated from the resistor network to make the resistance value of the resistor network the required resistance value.
Abstract:
A semiconductor device is provided with a substrate made of a semiconductor material, an interconnect layer, at least one electronic element, and a sealing resin. The substrate has a main surface and a pair of lateral surfaces that are orthogonal to the main surface and face in opposite directions to each other. A recessed portion that is recessed from the main surface and has an opening portion that opens on at least one of the pair of lateral surfaces is formed in the substrate. The interconnect layer is formed on the substrate. The electronic element is an orientation sensor, for example, and is accommodated in the recessed portion of the substrate. The sealing resin covers the electronic element.
Abstract:
Provided is a magnetism detection device by which it is possible to achieve a reduction in size and an increase in accuracy. A magnetism detection device includes: a magneto-impedance element; a magnetic field direction changing body; and a substrate that is formed of a semiconductor material and has an element arrangement recessed portion bottom surface and a back surface that face mutually opposite sides in a thickness direction, and a through-hole that reaches the element arrangement recessed portion bottom surface and the back surface and has a cross-sectional dimension that increases toward the main surface starting from the element arrangement recessed portion bottom surface. The magneto-impedance element is mounted on the element arrangement recessed portion bottom surface, and the magnetic field direction changing body is accommodated in the through-hole.
Abstract:
A semiconductor device includes a substrate that is made of a semiconductor material and has a main surface formed with a recess. The semiconductor device also includes a wiring layer formed on the substrate, an electronic element housed in the recess, and a sealing resin covering at least a part of the electronic element.
Abstract:
[Theme] A compact and refined chip resistor, with which a plurality of types of required resistance values can be accommodated readily with the same design structure, was desired. The chip resistor is arranged to have a resistor network on a substrate. The resistor network includes a plurality of resistor bodies arrayed in a matrix and having an equal resistance value. A plurality of types of resistance units are respectively arranged by one or a plurality of the resistor bodies being connected electrically. The plurality of types of resistance units are connected in a predetermined mode using connection conductor films and fuse films. By selectively fusing a fuse film, a resistance unit can be electrically incorporated into the resistor network or electrically separated from the resistor network to make the resistance value of the resistor network the required resistance value.
Abstract:
An electronic component includes a substrate having a principal surface, a chip arranged at the principal surface of the substrate, a sealing resin sealing the chip on the principal surface of the substrate, and a heat dissipation member formed on the sealing resin.
Abstract:
A compact and refined chip resistor, with which a plurality of types of required resistance values can be accommodated readily with the same design structure, was desired. The chip resistor is arranged to have a resistor network on a substrate. The resistor network includes a plurality of resistor bodies arrayed in a matrix and having an equal resistance value. A plurality of types of resistance units are respectively arranged by one or a plurality of the resistor bodies being connected electrically. The plurality of types of resistance units are connected in a predetermined mode using connection conductor films and fuse films. By selectively fusing a fuse film, a resistance unit can be electrically incorporated into the resistor network or electrically separated from the resistor network to make the resistance value of the resistor network the required resistance value.
Abstract:
A thermal print head includes a semiconductor substrate, a resistor layer and a wiring layer. The resistor layer is formed on the semiconductor substrate and has a plurality of heat generating portions arranged in the main scanning direction. The wiring layer is formed on the semiconductor substrate to be included in a conduction path for energizing the plurality of heat generating portions. The conduction path includes a path or paths provided by the semiconductor substrate itself.
Abstract:
A multi-chip module includes a plurality of chip parts with each chip part having an electrode, a sealing resin for sealing the plurality of chip parts, and an external connection terminal secured to the sealing resin so as to be exposed from the outer surface of the sealing resin and electrically connected to the electrode of at least one of the chip parts.
Abstract:
A chip capacitor and a method for manufacturing the chip capacitor, where the chip capacitor includes a substrate, a first external electrode disposed on the substrate, a second external electrode disposed on the substrate, capacitor elements formed on the substrate and connected between the first external electrode and the second external electrode, and fuses that are formed on the substrate, are each interposed between the capacitor elements and the first external electrode or the second external electrode, and are capable of disconnecting each of the capacitor elements.