Abstract:
A mounting substrate includes a substrate, a connection electrode, which is formed on a front surface of the substrate and on which an electronic component is mounted via a conductive bonding material, a resist film, formed on the front surface of the substrate so as to cover a peripheral edge portion of the connection electrode, and a receiving portion, formed in the resist film so as to expose a portion of the peripheral edge portion of the connection electrode and arranged to receive an excess portion of the conductive bonding material.
Abstract:
A compact and refined chip resistor, with which a plurality of types of required resistance values can be accommodated readily with the same design structure, was desired. The chip resistor is arranged to have a resistor network on a substrate. The resistor network includes a plurality of resistor bodies arrayed in a matrix and having an equal resistance value. A plurality of types of resistance units are respectively arranged by one or a plurality of the resistor bodies being connected electrically. The plurality of types of resistance units are connected in a predetermined mode using connection conductor films and fuse films. By selectively fusing a fuse film, a resistance unit can be electrically incorporated into the resistor network or electrically separated from the resistor network to make the resistance value of the resistor network the required resistance value.
Abstract:
A chip part is provided that includes a substrate in which an element region and an electrode region are set, an insulating film (a first insulating film and a second insulating film) which is formed on the substrate and which selectively includes an internal concave/convex structure in the electrode region on a surface, a first connection electrode and a second connection electrode which include, at a bottom portion, an anchor portion entering the concave portion of the internal concave/convex structure and which include an external concave/convex structure on a surface on the opposite side and a circuit element which is disposed in the element region and which is electrically connected to the first connection electrode and the second connection electrode.
Abstract:
A chip component includes a chip component main body, an electrode pad formed on a top surface of the main body, a protective film covering the top surface of the main body and having a contact hole exposing the pad, and an external connection electrode electrically connected to the pad via the hole and having a protruding portion, which, in a plan view looking from a direction perpendicular to a top surface of the pad, extends to a top surface of the film and protrudes further outward than a region of contact with the pad over the full periphery of an edge portion of the hole. A method for manufacturing the component includes forming the pad on the main body's top surface, forming the protective film, forming the hole in the film so as to expose the pad, and forming the electrode electrically connected to the pad via the hole.
Abstract:
A chip part according to the present invention includes a substrate having a front surface and a side surface, an electrode integrally formed on the front surface and the side surface so as to cover an edge portion of the front surface of the substrate, and an insulating film interposed between the electrode and the substrate. A circuit assembly according to the present invention includes the chip part according to the present invention and a mounting substrate having a land, bonded by solder to the electrode, on a mounting surface facing the front surface of the substrate.
Abstract:
A method for manufacturing a chip component includes forming an element, which includes a plurality of element parts, on a substrate. A plurality of fuses are formed, for disconnectably connecting each of the plurality of element parts to an external connection electrode. The external connection electrode, which is arranged to provide external connection for the element, is formed by electroless plating on the substrate.
Abstract:
A chip resistor includes: a board having a device formation surface, a back surface opposite from the device formation surface and side surfaces connecting the device formation surface to the back surface, a resistor portion provided on the device formation surface, a first connection electrode and a second connection electrode provided on the device formation surface and electrically connected to the resistor portion, and a resin film covering the device formation surface with the first connection electrode and the second connection electrode being exposed therefrom. Intersection portions of the board along which the back surface intersects the side surfaces each have a rounded shape.
Abstract:
A filter chip includes a substrate, a plurality of external terminals formed on the substrate for external connection, and a plurality of passive element forming regions provided in the regions between the plurality of external terminals in plan view when viewed along a direction normal to the surface of the substrate, the plurality of passive element forming regions including at least a resistor forming region where a resistor is formed. The resistor forming region includes a resistive conductive film formed on the substrate with one end and the other end thereof electrically connected to different ones of the external terminals, and a fuse portion integrally formed with the resistive conductive film. The fuse portion is cuttably provided to electrically connect a part of the resistive conductive film to the external terminals, or to electrically separate a part of the resistive conductive film from the external terminals.
Abstract:
Disclosed is a chip component including a substrate having a first surface and a second surface on an opposite side from the first surface, and a third surface connecting the first surface and the second surface to each other, an external surface resin configured to cover at least the third surface of the substrate, and a terminal electrode formed on the first surface of the substrate and exposed from the external surface resin. A recessed portion is formed in an end portion of the third surface of the substrate, the end portion being on the first surface side. The external surface resin is embedded in the recessed portion.
Abstract:
[Theme] A compact and refined chip resistor, with which a plurality of types of required resistance values can be accommodated readily with the same design structure, was desired. The chip resistor is arranged to have a resistor network on a substrate. The resistor network includes a plurality of resistor bodies arrayed in a matrix and having an equal resistance value. A plurality of types of resistance units are respectively arranged by one or a plurality of the resistor bodies being connected electrically. The plurality of types of resistance units are connected in a predetermined mode using connection conductor films and fuse films. By selectively fusing a fuse film, a resistance unit can be electrically incorporated into the resistor network or electrically separated from the resistor network to make the resistance value of the resistor network the required resistance value.