Abstract:
A semiconductor device includes an interlayer insulating layer, a first protective insulating layer on the interlayer insulating layer, a second protective insulating layer on the first protective insulating layer, and insulating structures disposed in at least one of the first protective insulating layer or the second protective insulating layer, wherein the insulating structures include a first insulating structure including a first material having a first physical property, and a second insulating structure including a second material having a second physical property, and the first material and the second material include a same material, and the first physical property and the second physical property are different physical properties.
Abstract:
Semiconductor chips, semiconductor packages, and semiconductor chip fabrication methods may be provided. The semiconductor chip includes a substrate including a device region and an edge region, a device layer and a wiring layer sequentially stacked on the substrate, a sub-pad on the device region and a residual test pattern on the edge region wherein a sidewall of the residual test pattern is aligned with a sidewall of the substrate, and an upper dielectric stack covering the sub-pad and the residual test pattern. The upper dielectric stack may expose a portion of a top surface of the residual test pattern. A sidewall of the upper dielectric stack may have a stepped region.
Abstract:
Provided are a semiconductor memory device and a method of fabricating the same. the semiconductor memory device may include a semiconductor substrate with a first trench defining active regions in a first region and a second trench provided in a second region around the first region, a gate electrode provided on the first region to cross the active regions, a charge storing pattern disposed between the gate electrode and the active regions, a blocking insulating layer provided between the gate electrode and the charge storing pattern and extending over the first trench to define a first air gap in the first trench, and an insulating pattern provided spaced apart from a bottom surface of the second trench to define a second air gap in the second trench.
Abstract:
Decoupling structures are provided. The decoupling structures may include first conductive patterns, second conductive patterns and a unitary supporting structure that structurally supports the first conductive patterns and the second conductive patterns. The decoupling structures may also include a common electrode disposed between ones of the first conductive patterns and between ones of the second conductive patterns. The first conductive patterns and the common electrode are electrodes of a first capacitor, and the second conductive patterns and the common electrode are electrodes of a second capacitor. The unitary supporting structure may include openings when viewed from a plan perspective. The first conductive patterns and the second conductive patterns are horizontally spaced apart from each other with a separation region therebetween, and none of the openings extend into the separation region.
Abstract:
A method performed by at least one processor of a wireless communication apparatus including a plurality of internal components, the method includes generating a plurality of sets of noise information corresponding to a plurality of test noise signals generated by the plurality of internal components under a plurality of state conditions, receiving a radio frequency (RF) signal, determining a magnitude of a noise signal that interferes with the RF signal by using a set of noise information corresponding to a current state condition from among the plurality of sets of noise information, and performing noise filtering on the RF signal based on a magnitude of the RF signal and the magnitude of the noise signal.
Abstract:
Decoupling structures are provided. The decoupling structures may include first conductive patterns, second conductive patterns and a unitary supporting structure that structurally supports the first conductive patterns and the second conductive patterns. The decoupling structures may also include a common electrode disposed between ones of the first conductive patterns and between ones of the second conductive patterns. The first conductive patterns and the common electrode are electrodes of a first capacitor, and the second conductive patterns and the common electrode are electrodes of a second capacitor. The unitary supporting structure may include openings when viewed from a plan perspective. The first conductive patterns and the second conductive patterns are horizontally spaced apart from each other with a separation region therebetween, and none of the openings extend into the separation region.
Abstract:
A method for manufacturing an electronic device, according to the present disclosure, may include: detecting positions of one or more heat sources, which are disposed in a printed circuit board or in a display of the electronic device, or a path of the heat that is diffused from the heat sources; selecting a heat radiating structure to correspond to the positions of the heat sources or the diffusion path; selecting an adiabatic member or a heat radiating member, which is disposed based the selected heat radiating structure to block or radiate the heat transferred from the heat source; and forming the selected heat radiating structure or disposing the selected adiabatic member or heat radiating member on the periphery of the heat source or on the diffusion path. According to various embodiments of the disclosure, the heat radiation improvement can be maximized and/or improved by improving the structure of a heat radiation path of the electronic device and by selecting and disposing heat radiating members in appropriate positions.
Abstract:
A capacitor structure includes a plurality of bottom electrodes horizontally spaced apart from each other, a support structure covering sidewalls of the bottom electrodes, a top electrode surrounding the support structure and the bottom electrodes, and a dielectric layer interposed between the support structure and the top electrode, and between the top electrode and each of the bottom electrodes. An uppermost surface of the support structure is positioned at a higher level than an uppermost surface of each of the bottom electrodes.
Abstract:
A semiconductor memory device may include a cell substrate including a cell array region and an extension region, a first mold structure on the cell substrate, a second mold structure on the first mold structure, a channel structure passing through the first and second mold structures on the cell array region, and a cell contact structure passing through the first and second mold structures on the extension region. The first mold structure and the second mold structure respectively include first gate electrodes and second gate electrodes sequentially stacked on the cell array region and stacked in a stepwise manner on the extension region. The cell contact structure includes a lower conductive pattern connected to one of the first gate electrodes, an upper conductive pattern connected to one of the second gate electrodes, and an insulating pattern separating the lower conductive pattern from the upper conductive pattern.
Abstract:
A semiconductor device includes a substrate including a first side and a second side opposite to each other, a first penetrating structure that penetrates the substrate, and a second penetrating structure that penetrates the substrate, the second penetrating structure being spaced apart from the first penetrating structure, and an area of the first penetrating structure being more than twice an area of the second penetrating structure, as viewed from the first side of the substrate.