摘要:
A method for manufacturing a chip scale package (CSP) including a semiconductor chip and conductive bumps is disclosed. In the present invention, a flexible substrate is provided with a conductive pattern formed thereon. The substrate has a top surface and a bottom surface. Then, a first photosensitive resin pattern is formed over the top surface of the substrate. Next, the first photosensitive resin pattern is cured. Subsequently, a second photosensitive resin pattern is formed over the cured first photosensitive resin pattern. The second photosensitive resin pattern includes a slit comprising a bottom of the first photosensitive resin pattern and side walls of the second photosensitive resin pattern. With the present invention, the problem of burning of neighboring patterns as well as the problem of the overflow of the encapsulant can be overcome.
摘要:
A semiconductor package with improved solder joint reliability, and a method of fabricating the same are provided. The semiconductor package comprises a printed circuit board (PCB) having a plurality of interconnection layers formed on its surface, and having a plurality of through holes connected to the interconnection layers. An adhesive member is attached to an upper surface of the PCB, and a semiconductor chip is electrically connected to the interconnection layers and mounted on an upper surface of the adhesive member. A solder connecting part fills each through hole so as to form a mechanically strong connection that is resistant to breakage during thermal transients and physical impacts.
摘要:
A semiconductor package may include a semiconductor chip and a substrate. The substrate may include a plurality of bonding pads for interfacing the semiconductor chip with a printed circuit board through conductive bumps that may be electrically connected to the bonding pads, respectively. The bonding pads may include non-solder mask defined (NSMD) bonding pads and solder mask defined (SMD) bonding pads that may be alternately arranged on the substrate. The SMD bonding pads may have sufficient reliability with respect to a drop test and the NSMD bonding pads may have sufficient reliability with respect to the board-level temperature cycle.
摘要:
Embodiments provide a light emitting device including a light emitting structure having a first conduction type semiconductor layer, an active layer, and a second conduction type semiconductor layer, a metal filter of an irregular pattern on the light emitting structure, and openings between the irregular patterns in the metal filter.
摘要:
An integrated circuit substrate includes an integrated circuit chip having a plurality of electrically conductive pads on a surface thereof and a printed circuit board mounted to the integrated circuit chip. The printed circuit board includes an alternating arrangement of first and second electrically conductive bond fingers. These first and second bond fingers are elevated at first and second different heights, respectively, relative to the plurality of electrically conductive pads. The printed circuit board also includes a first plurality of electrically insulating pedestals supporting respective ones of the first electrically conductive bond fingers at elevated heights relative to the second electrically conductive bond fingers. First and second pluralities of electrical interconnects (e.g., wires, beam leads) are also provided. The first plurality of electrical interconnects operate to electrically connect first ones of the plurality of electrically conductive pads to respective ones of the first electrically conductive bond fingers. The second plurality of electrical interconnects electrically connect second ones of the plurality of electrically conductive pads to respective ones of the second electrically conductive bond fingers.
摘要:
A chemical-mechanical polishing (CMP) apparatus for manufacturing a semiconductor device. The apparatus includes: a spin chuck for supporting and rotating a semiconductor wafer; a polisher comprising a polishing pad for planarizing a surface of the semiconductor wafer, the polisher moving along the surface of the semiconductor wafer by a polishing arm; and a polisher supporting device for supporting the polisher and maintaining the polisher in a horizontal state, while polishing an edge part of the surface of the semiconductor wafer, in order to improve polishing uniformity of a center part and the edge part of the semiconductor wafer. Accordingly, polishing uniformity of the center part and edge part of the semiconductor wafer may be improved, and a height of the polisher supporting device may be optimized according to a polishing degree. Also, the polisher may be easily supported, wear and tear of the support head may be minimized, and the support head may function as a conditioner.
摘要:
An integrated circuit substrate includes an integrated circuit chip having a plurality of electrically conductive pads on a surface thereof and a printed circuit board mounted to the integrated circuit chip. The printed circuit board includes an alternating arrangement of first and second electrically conductive bond fingers. These first and second bond fingers are elevated at first and second different heights, respectively, relative to the plurality of electrically conductive pads. The printed circuit board also includes a first plurality of electrically insulating pedestals supporting respective ones of the first electrically conductive bond fingers at elevated heights relative to the second electrically conductive bond fingers. First and second pluralities of electrical interconnects (e.g., wires, beam leads) are also provided. The first plurality of electrical interconnects operate to electrically connect first ones of the plurality of electrically conductive pads to respective ones of the first electrically conductive bond fingers. The second plurality of electrical interconnects electrically connect second ones of the plurality of electrically conductive pads to respective ones of the second electrically conductive bond fingers.
摘要:
A board structure, a ball grid array (BGA) package and method thereof and a solder ball and method thereof. The example solder ball may include a solder portion and a grooved connection portion, formed through a partitioning process, configured to fit a corresponding protruding portion on a board. The example BGA package may include a plurality of the example solder balls. The example board structure may include the example BGA package connected to the board via the grooved connection portions and the protruding portions.
摘要:
Disclosed is a diamond tool having a metal plate inserted therein. Between abrasive layers containing diamond particles is inserted a ferrous or non-ferrous metal plate having a wear resistance lower than that of the abrasive layers such that a concave groove is spontaneously formed during a cutting process, thereby reducing the contact load with a workpiece to thereby avoid vibration (wobbling) of a shank, and providing a discharge path for smoothly removing cutting chips and the cooling water. In addition, the content of abrasives and the wear resistance of bonding material are uniformly constituted so that the shrinkage rate does not need to be considered during sintering and the manufacturing process can be simplified, thereby reducing the manufacturing cost and improving the productivity therefor. Furthermore, the area of the metal plate can be controlled, thereby enabling an easy design conforming to the working conditions with a workpiece.
摘要:
An obstacle sensor includes a line light irradiating unit including a light-emitting unit, a light-emitting driving unit to drive the light-emitting unit, and a first conical mirror, an apex of which is disposed towards the light-emitting unit in a light irradiation direction of the light-emitting unit and which converts light emitted from the light-emitting unit into line light irradiated in all directions, and a reflected light receiving unit including a second conical mirror to condense light, that is irradiated from the first conical mirror and is then reflected from an obstacle, a lens, that is spaced from the apex of the second conical mirror by a predetermined distance and transmits the reflected light, an imaging unit to image the reflected light that passes through the lens, an image processing unit, and an obstacle sensing control unit.