Abstract:
An electronic package structure is provided, including a substrate, a package encapsulant disposed on the substrate, and an antenna structure corresponding to a disposing area of the package encapsulant and having a first extension layer, a second extension layer disposed on the substrate, and a connection portion disposed between and electrically connected to the first extension layer and the second extension layer. Through the formation of the antenna structure on the disposing area of the package encapsulant, the substrate is not required to be widen, and, as such, the electronic package structure meets the miniaturization requirement.
Abstract:
An electronic package is disclosed, which includes: a substrate; at least an electronic element disposed on the substrate; an encapsulant formed on the substrate and encapsulating the electronic element; and an antenna body embedded in the encapsulant without contacting with the substrate and exposed from a surface of the encapsulant. Since the antenna body is not disposed on the substrate, the surface area of the substrate can be reduced to meet the miniaturization requirement of the electronic package.
Abstract:
A semiconductor package and a method of manufacturing the same are provided. The semiconductor package includes: a substrate having a plurality of conductive lands and a plurality of bonding pads surrounding the conductive lands formed on a surface thereof; a plurality of passive devices mounted on the conductive lands; an insulation layer formed on the surface and having a portion of the passive devices embedded therein; a semiconductor chip mounted on a top surface of the insulation layer; a plurality of bonding wires electrically connecting the semiconductor chip and the bonding pads; an encapsulant formed on the surface of the substrate to encapsulate the insulation layer, the bonding wires and the semiconductor chip, wherein a region of the semiconductor chip projected onto the substrate covers a portion of an outermost one of the passive devices. Therefore, the mounting density of the passive devices is improved.
Abstract:
A semiconductor package and a method of manufacturing the same are provided. The semiconductor package includes: a substrate having a plurality of conductive lands and a plurality of bonding pads surrounding the conductive lands formed on a surface thereof; a plurality of passive devices mounted on the conductive lands; an insulation layer formed on the surface and having a portion of the passive devices embedded therein; a semiconductor chip mounted on a top surface of the insulation layer; a plurality of bonding wires electrically connecting the semiconductor chip and the bonding pads; an encapsulant formed on the surface of the substrate to encapsulate the insulation layer, the bonding wires and the semiconductor chip, wherein a region of the semiconductor chip projected onto the substrate covers a portion of an outermost one of the passive devices. Therefore, the mounting density of the passive devices is improved.
Abstract:
A method of eliminating a defective bonding wire is provided, including moving a bonding member from a first region of a carrier to a second region of the carrier if the bonding wire of the bonding member is defective, and cooperatively operating a movement member and the bonding member so as to cause the defective bonding wire to be removed from the bonding member and bonded to the second region of the carrier, thereby auto-debugging the bonding member and improving the production efficiency.
Abstract:
A package structure is provided, including an electronic element with a low frequency, a shielding member connected to the electrosnic element, and an encapsulant covering the electronic element and the shielding member, such that the electronic element is shielded from erroneous signals.
Abstract:
An electronic package is disclosed, which includes: a substrate; at least an electronic element disposed on the substrate; an encapsulant formed on the substrate and encapsulating the electronic element; and an antenna body embedded in the encapsulant without contacting with the substrate and exposed from a surface of the encapsulant. Since the antenna body is not disposed on the substrate, the surface area of the substrate can be reduced to meet the miniaturization requirement of the electronic package.
Abstract:
A semiconductor package is disclosed, which includes: a circuit board; a carrier disposed on the circuit board; an RF chip disposed on the carrier; a plurality of high level bonding wires electrically connecting electrode pads of the RF chip and the circuit board; and an encapsulant formed on the circuit board for encapsulating the carrier, the high level bonding wires and the RF chip. The present invention positions the RF chip at a high level so as to facilitate element arrangement and high frequency wiring on the circuit board, thereby achieving a highly integrated wireless SiP (System in Package) module.
Abstract:
An electronic package structure is provided, including a substrate, a package encapsulant disposed on the substrate, and an antenna structure corresponding to a disposing area of the package encapsulant and having a first extension layer, a second extension layer disposed on the substrate, and a connection portion disposed between and electrically connected to the first extension layer and the second extension layer. Through the formation of the antenna structure on the disposing area of the package encapsulant, the substrate is not required to be widen, and, as such, the electronic package structure meets the miniaturization requirement.
Abstract:
A semiconductor package is disclosed, which includes: a circuit board; a carrier disposed on the circuit board; an RF chip disposed on the carrier; a plurality of high level bonding wires electrically connecting electrode pads of the RF chip and the circuit board; and an encapsulant formed on the circuit board for encapsulating the carrier, the high level bonding wires and the RF chip. The present invention positions the RF chip at a high level so as to facilitate element arrangement and high frequency wiring on the circuit board, thereby achieving a highly integrated wireless SiP (System in Package) module.