摘要:
A two-layer nanotape that includes a nanoribbon substrate and an oxide that is epitaxially deposited on a flat surface of the nanoribbon substrate is described. A method for making the nanotape that includes providing plural substrates and placing the substrates in a quartz tube is also described. The oxide is deposited on the substrate using a pulsed laser ablation deposition process. The nanoribbons can be made from materials such as SnO2, ZnO, MgO, Al2O3, Si, GaN, or CdS. Also, the sintered oxide target can be made from materials such as TiO2, transition metal doped TiO2 (e.g., CO0.05Ti0.95O2), BaTiO3, ZnO, transition metal doped ZnO (e.g., Mn0.1Zn0.9O and Ni0.1Zn0.9O), LaMnO3, BaTiO3, PbTiO3, YBa2Cu3Oz, or SrCu2O2 and other p-type oxides. Additionally, temperature sensitive nanoribbon/metal bilayers and their method of fabrication by thermal evaporation are described. Metals such as Cu, Au, Ti, Al, Pt, Ni and others can be deposited on top of the nanoribbon surface. Such devices bend significantly as a function of temperature and are suitable as, for example, thermally activated nanoscale actuators.
摘要翻译:描述了包括纳米薄片基底和外延沉积在纳米薄片的平坦表面上的氧化物的双层纳米线。 还描述了一种制造纳米线的方法,其包括提供多个基板并将基板放置在石英管中。 氧化物使用脉冲激光烧蚀沉积工艺沉积在衬底上。 纳米带可以由诸如SnO 2,ZnO,MgO,Al 2 O 3,Si,GaN或CdS的材料制成。 此外,烧结氧化物靶可以由诸如TiO 2,过渡金属掺杂的TiO 2(例如,CO 0.05 Ti 0.95 O 2),BaTiO 3,ZnO,过渡金属掺杂的ZnO(例如Mn0.1Zn0.9O和Ni0.1Zn0)的材料制成。 9O),LaMnO3,BaTiO3,PbTiO3,YBa2Cu3Oz或SrCu2O2等p型氧化物。 另外,描述了温度敏感的纳米棒/金属双层及其通过热蒸发制造的方法。 诸如Cu,Au,Ti,Al,Pt,Ni等的金属可以沉积在纳米棒表面的顶部。 这样的装置作为温度的函数显着弯曲,并且适合于例如热活化的纳米级致动器。
摘要:
Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.
摘要:
Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar nullepitaxial-castingnull approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors. Furthermore, the fabrication of multi-sheath nanotubes are described as well as nanotubes having multiple longitudinal segments.
摘要:
One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as nullnanowiresnull, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
摘要:
One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as nullnanowiresnull, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).