摘要:
A first channel is formed in the side of a first diffusion plate which is on that side of a gas inlet tube and a recess is formed in the side which is on that side of an electrode plate. The first channel and the recess communicate with each other through a plurality of inlet ports. The first channel and the inlet ports form a gas flow passage L which leads to the recess from the gas inlet tube. As a process gas supplied from the gas inlet tube passes through the gas flow passage L, it is supplied, dispersed, to a hollow portion formed between the recess and the electrode plate.
摘要:
In a parallel plate type plasma processing apparatus (1), a baffle plate (28) is fitted between a ceiling (2b) and side wall (2a) of a chamber (2). The baffle plate (28) confines plasma into the upper portion of the chamber (2), and at the same time, constitutes a return route of a return current to a high frequency power source (27). A return current flowing through the baffle plate (28) returns to the high frequency power source (27) via the ceiling (2b) of the chamber (2).
摘要:
An inorganic insulating film 103 of SiC is formed on a fluorine-containing carbon film 102 by a chemical vapor deposition process using SiF4 and C2H4 as source gases. By using SiF4 and CF4 containing no hydrogen (H) as source gases, H inhibited from being incorporated into the inorganic insulating film 103 forming a hard mask 113. Thus, H having diffused outwardly from the inorganic insulating film 103 is bonded to fluorine (F) in the fluorine-containing carbon film 102 to form HF which inhibits the corrosion of the inorganic insulating film 103 and so forth. Thus, it is possible to inhibit the deterioration of the adhesion of the hard mask 113 formed of the inorganic insulating film 103 to other layers, such as the fluorine-containing carbon film 102.
摘要翻译:通过使用SiF 4和C 2 H 4作为源气体的化学气相沉积法,在含氟碳膜102上形成SiC的无机绝缘膜103。 通过使用不含氢(H)作为源气体的SiF 4和CF 4,H被抑制成形成硬掩模113的无机绝缘膜103.因此,从无机绝缘膜103向外扩散的H与氟结合(F ),形成抑制无机绝缘膜103的腐蚀等的HF。 因此,可以抑制由无机绝缘膜103形成的硬掩模113与其它层(例如含氟碳膜102)的粘附性的劣化。
摘要:
It is an object to provide a prepreg for a printed laminate that has a low thermal expansion coefficient in the planar direction, excellent drillability, and further excellent heat resistance and flame retardancy, and a laminate and a metal foil-clad laminate. A resin composition according to the present invention includes a molybdenum compound (A); an epoxy resin (B); a curing agent (C); and an inorganic filler (D), wherein a Mohs hardness of the inorganic filler (D) is 3.5 or more, and a content of the inorganic filler (D) is 40 to 600 parts by mass based on 100 parts by mass of a total of resin solid components.
摘要:
A resin composition contains a cyanate ester compound, a maleimide compound, an epoxy resin, a silicone rubber powder, and an inorganic filler. The cyanate ester compound contains a compound represented by the following formula. The silicone rubber powder is contained in an amount of 40 to 150 parts by mass based on 100 parts by mass in total of the cyanate ester compound, the maleimide compound, and the epoxy resin. The inorganic filler is contained in an amount of 100 to 340 parts by mass based on 100 parts by mass in total of the cyanate ester compound, the maleimide compound, and the epoxy resin. A total content of the silicone rubber powder and the inorganic filler is 140 to 380 parts by mass based on 100 parts by mass in total of the cyanate ester compound, the maleimide compound, and the epoxy resin.
摘要:
A resin composition contains a cyanate ester compound, a maleimide compound, an epoxy resin, a silicone rubber powder, and an inorganic filler. The cyanate ester compound contains a compound represented by the following formula. The silicone rubber powder is contained in an amount of 40 to 150 parts by mass based on 100 parts by mass in total of the cyanate ester compound, the maleimide compound, and the epoxy resin. The inorganic filler is contained in an amount of 100 to 340 parts by mass based on 100 parts by mass in total of the cyanate ester compound, the maleimide compound, and the epoxy resin. A total content of the silicone rubber powder and the inorganic filler is 140 to 380 parts by mass based on 100 parts by mass in total of the cyanate ester compound, the maleimide compound, and the epoxy resin.
摘要:
There is provided a resin composition for printed wiring boards that, while maintaining excellent flame retardance, has excellent heat resistance, reflow resistance, and drilling workability, and, at the same time, has low water absorption without use of halogen compounds and phosphorus compounds. The resin composition comprises (A) a non-halogen epoxy resin, (B) a biphenyl aralkyl phenolic resin, (C) a maleimide compound and (D) an inorganic filler.
摘要:
This invention relates to a method for storing a naphthol aralkyl type cyanate ester resin solution, which is difficult to precipitate due to long term storage in a solution state, and particularly relates to a method for storing a naphthol aralkyl type cyanate ester resin solution (AB), which comprises: preparing (i) a naphthol aralkyl type cyanate ester resin solution (AB) comprising a naphthol aralkyl type cyanate ester resin (A), a maleimide compound (B) and a solvent, (ii) a naphthol aralkyl type cyanate ester resin solution (AB) comprising a prepolymer of a naphthol aralkyl type cyanate ester resin (A), a maleimide compound (B) and a solvent, or (iii) a naphthol aralkyl type cyanate ester resin solution (AB) comprising a prepolymer of a naphthol aralkyl type cyanate ester resin (A) and a maleimide compound (B), and a solvent, and; storing the resin solution (AB).
摘要:
Disclosed is a thin film which is used in the production process of a semiconductor device. The thin film contains germanium, silicon, nitrogen and hydrogen.
摘要:
A sidewall spacer film or the like is removed without damaging a device structure section. Specifically disclosed is a method for manufacturing a semiconductor device, which comprises a step of forming a first thin film composed of GeCOH or GeCH on a substrate (21) to be processed, a step of removing a part of the first thin film and obtaining a remaining portion (30), and a processing step of performing a certain process on the substrate (21) through the space formed by removing the first thin film.