Abstract:
Systems, methods, and structures for improving the performance of thin-film electronic devices, in particular organic LEDs (OLEDs) used in lighting, are disclosed. Enhanced substrates, upon which OLED devices may be deposited, incorporate various structures for extracting light trapped in the device stack and substrate. The substrates provide an improved transparent electrode layer. Methods for forming planarized buried extraction structures to reduce disruption to the deposited device stack layers are disclosed, as are methods for providing smooth, planarized buried metal mesh conductors.
Abstract:
The present disclosure advances the art by providing a method and system for forming electronic devices. In particular, and by example only, methods are described for forming devices for harvesting energy in the terahertz frequency range on flexible substrates, wherein the methods provide favorable accuracy in registration of the various device elements and facilitate low-cost R2R manufacturing.
Abstract:
Systems and methods are disclosed by which patterns of various materials can be formed on flexible substrates by a continuous roll-to-roll manufacturing process. The patterns may include metallic, transparent conductive, or non-metallic elements with lateral dimensions including in the range from below 100 nanometers to millimeters and with thickness dimensions including the range from tens of Angstroms to greater than 10,000 Angstroms. The substrate may be any material capable of sufficient flexibility for compatibility with roll-based processing equipment, including polymeric films, metallic foils, and thin glass, with polymeric films representing a particularly broad field of application. Methods may include the continuous roll-to-roll formation of a temporary polymeric structure with selected areas open to the underlying substrate, the continuous addition or subtraction of constituent materials, and the continuous removal, where necessary, of the polymeric structure and any excess material.
Abstract:
Methods, apparatus and systems are disclosed by which patterned layers can be formed in a roll-to-roll process using a variable and programmable means for applying liquids and solutions used in the patterning process.
Abstract:
An aspect of the present disclosure provides for a quarter-wave retarder film that is overlaid onto a linearly-polarized stereoscopic image pair in an appropriate orientation in order to produce an image that is viewable using circularly polarized viewing glasses for increased viewing comfort and head-tilt resistance. Another aspect of the present disclosure enables the production of StereoJet-type ink jet images through the use of two separate single-sided clear polarizer substrates with the stretch orientation parallel to the running edge of the support layer. A further aspect of the present disclosure is directed to the production of laminated stereoscopic images in which the spacing of the image planes of the members of the image pair can be made in close proximity, farther proximity, or at an intermediate proximity to achieve desired optical, mechanical and/or visual results.
Abstract:
Durable seamless replication tools are disclosed for replication of seamless relief patterns in desired media, for example in optical recording or data storage media. Methods of making such durable replication tools are disclosed, including preparing a recording substrate on the inner surface of a support cylinder, recording and developing a relief pattern in the substrate, creating a durable negative relief replica of the pattern, extracting the resulting durable tool sleeve from a processing cell, and mounting the tool sleeve on a mounting fixture. Apparatus are disclosed for fabricating such seamless replication tools, including systems for recording a desired relief pattern on a photosensitive layer on an inner surface of a support cylinder. Also disclosed are electrodeposition cells for forming a durable tool sleeve having a desired relief pattern. The replication tool relief features may have critical dimensions down to the micron and nanometer regime.
Abstract:
Durable seamless replication tools are disclosed for replication of seamless relief patterns in desired media, for example in optical recording or data storage media. Methods of making such durable replication tools are disclosed, including preparing a recording substrate on the inner surface of a support cylinder, recording and developing a relief pattern in the substrate, creating a durable negative relief replica of the pattern, extracting the resulting durable tool sleeve from a processing cell, and mounting the tool sleeve on a mounting fixture. Apparatus are disclosed for fabricating such seamless replication tools, including systems for recording a desired relief pattern on a photosensitive layer on an inner surface of a support cylinder. Also disclosed are electrodeposition cells for forming a durable tool sleeve having a desired relief pattern. The replication tool relief features may have critical dimensions down to the micron and nanometer regime.
Abstract:
Techniques are described for fabricating multilayer structures having arrays of conducting elements or apertures in a conductive grid which can be used to form frequency selective surfaces (FSSs), antenna arrays and the like on flexible substrates. Fabrication techniques can include use of a polymer mask or direct dielectric molding. In embodiments utilizing a polymer mask, a temporary 3D polymeric relief pattern is formed on a substrate and used as a mask or stencil to form the desired pattern elements. In an additive process, the conductive material is deposited over the masked surface. Deposition can be followed by mask removal In the subtractive process, the conductive layer can be deposited prior to formation of the polymer mask, and the exposed parts of the underlying conductive layer can be etched. Other embodiments utilize dielectric molding in which the molded structure itself becomes an integral and permanent part of the FSS structure.
Abstract:
Means, apparatus, systems, and/or methods are described for forming improved rigid or flexible semi-transparent imprinting templates. These templates can be used to produce patterning masks having improved resolution that do not require plasma etching for residue removal. The methods and apparatus are compatible with roll-to-roll manufacturing processes and enable roll-to-roll formation of a wide range of metal patterned films.
Abstract:
Durable seamless replication tools are disclosed for replication of seamless relief patterns in desired media, for example in optical recording or data storage media. Methods of making such durable replication tools are disclosed, including preparing a recording substrate on the inner surface of a support cylinder, recording and developing a relief pattern in the substrate, creating a durable negative relief replica of the pattern, extracting the resulting durable tool sleeve from a processing cell, and mounting the tool sleeve on a mounting fixture. Apparatus are disclosed for fabricating such seamless replication tools, including systems for recording a desired relief pattern on a photosensitive layer on an inner surface of a support cylinder. Also disclosed are electrodeposition cells for forming a durable tool sleeve having a desired relief pattern. The replication tool relief features may have critical dimensions down to the micron and nanometer regime.