摘要:
A semiconductor micro-electromechanical system (MEMS) switch provided with noble metal contacts that act as an oxygen barrier to copper electrodes is described. The MEMS switch is fully integrated into a CMOS semiconductor fabrication line. The integration techniques, materials and processes are fully compatible with copper chip metallization processes and are typically, a low cost and a low temperature process (below 400° C.). The MEMS switch includes: a movable beam within a cavity, the movable beam being anchored to a wall of the cavity at one or both ends of the beam; a first electrode embedded in the movable beam; and a second electrode embedded in an wall of the cavity and facing the first electrode, wherein the first and second electrodes are respectively capped by the noble metal contact.
摘要:
A semiconductor micro-electromechanical system (MEMS) switch provided with noble metal contacts that act as an oxygen barrier to copper electrodes is described. The MEMS switch is fully integrated into a CMOS semiconductor fabrication line. The integration techniques, materials and processes are fully compatible with copper chip metallization processes and are typically, a low cost and a low temperature process (below 400° C.). The MEMS switch includes: a movable beam within a cavity, the movable beam being anchored to a wall of the cavity at one or both ends of the beam; a first electrode embedded in the movable beam; and a second electrode embedded in an wall of the cavity and facing the first electrode, wherein the first and second electrodes are respectively capped by the noble metal contact.
摘要:
A method of forming an inductor. The method including: (a) forming a dielectric layer on a top surface of a substrate; after (a), (b) forming a lower trench in the dielectric layer; after (b), (c) forming a resist layer on a top surface of the dielectric layer; after (c), (d) forming an upper trench in the resist layer, the upper trench aligned to the lower trench, a bottom of the upper trench open to the lower trench; and after (d), (e) completely filling the lower trench and at least partially filling the upper trench with a conductor in order to form the inductor.
摘要:
A method of forming an inductor. The method including: (a) forming a dielectric layer on a top surface of a substrate; after (a), (b) forming a lower trench in the dielectric layer; after (b), (c) forming a resist layer on a top surface of the dielectric layer; after (c), (d) forming an upper trench in the resist layer, the upper trench aligned to the lower trench, a bottom of the upper trench open to the lower trench; and after (d), (e) completely filling the lower trench and at least partially filling the upper trench with a conductor in order to form the inductor.
摘要:
An inductor and a method of forming and the inductor, the method including: (a) providing a semiconductor substrate; (b) forming a dielectric layer on a top surface of the substrate; (c) forming a lower trench in the dielectric layer; (d) forming a resist layer on a top surface of the dielectric layer; (e) forming an upper trench in the resist layer, the upper trench aligned to the lower trench, a bottom of the upper trench open to the lower trench; and (f) completely filling the lower trench at least partially filling the upper trench with a conductor in order to form the inductor. The inductor including a top surface, a bottom surface and sidewalls, a lower portion of said inductor extending a fixed distance into a dielectric layer formed on a semiconductor substrate and an upper portion extending above said dielectric layer; and means to electrically contact said inductor.
摘要:
A method of forming an inductor. The method includes: forming a dielectric layer on a substrate; forming a lower trench in the dielectric layer; forming a liner in the lower trench and on the dielectric layer; forming a Cu seed layer over the liner; forming a resist layer on the Cu seed layer; forming an upper trench in the resist layer; electroplating Cu to completely fill the lower trench and at least partially fill the upper trench; removing the resist layer; selectively forming a passivation layer on all exposed Cu surfaces; selectively removing the Cu seed layer from regions of the liner; and removing the thus exposed regions of the liner from the dielectric layer, wherein a top surface of the inductor extends above a top surface of the dielectric layer, the passivation layer remaining on regions of sidewalls of the inductor above the top surface of the dielectric layer.
摘要:
Methods and compositions for electro-chemical-mechanical polishing (e-CMP) of silicon chip interconnect materials, such as copper, are provided. The methods include the use of compositions according to the invention in combination with pads having various configurations.
摘要:
Patterned copper structures are fabricated by selectively capping the copper employing selective etching and/or selective electroplating in the presence of a liner material. Apparatus for addressing the problem of an increased resistive path as electrolyte during electroetching and/or electroplating flows from the wafer edge inwards is provided.
摘要:
Patterned copper structures are fabricated by selectively capping the copper employing selective etching and/or selective electroplating in the presence of a liner material. Apparatus for addressing the problem of an increased resistive path as electrolyte during electroetching and/or electroplating flows from the wafer edge inwards is provided.
摘要:
An electrochemical process comprising: providing a 125 mm or larger semiconductor wafer in electrical contact with a conducting surface, wherein at least a portion of the semiconductor wafer is in contact with an electrolytic solution, said semiconductor wafer functioning as a first electrode; providing a second electrode in the electrolytic solution, the first and second electrode connected to opposite ends of an electric power source; and irradiating a surface of the semiconductor wafer with a light source as an electric current is applied across the first and the second electrodes. The invention is also directed to an apparatus including a light source and electrochemical components to conduct the electrochemical process.