Abstract:
A silicon carbide device includes a silicon carbide substrate, a contact layer including nickel, silicon and aluminum, a barrier layer structure including titanium and tungsten, and a metallization layer including copper. The contact layer is located on the silicon carbide substrate. The contact layer is located between the silicon carbide substrate and at least a part of the barrier layer structure. The barrier layer structure is located between the silicon carbide substrate and the metallization layer.
Abstract:
A power semiconductor device includes a semiconductor body having a front side surface, and a first passivation layer arranged above the front side surface. The first passivation layer is a polycrystalline diamond layer.
Abstract:
Various embodiments provide a method of reducing a sheet resistance in an electronic device encapsulated at least partially in an encapsulation material, wherein the method comprises: providing an electronic device comprising a multilayer structure and being at least partially encapsulated by an encapsulation material; and locally introducing energy into the multilayer structure for reducing a sheet resistance.
Abstract:
A method for fabricating a semiconductor chip is disclosed. In an embodiment, the method includes providing a plurality of semiconductor chips, wherein each semiconductor chip comprises a first main face, a second main face opposite to the first main face and side faces connecting the first and second main faces, placing the semiconductor chips on a carrier with the second main faces facing the carrier and applying an encapsulation material by transfer molding thereby forming the semiconductor chip panel, wherein the encapsulation material is applied so that the side faces of the semiconductor chips are covered with the encapsulation material while the first main faces are not.
Abstract:
In various embodiments, an arrangement is provided. The arrangement may include a plurality of chips; a chip carrier carrying the plurality of chips, the chip carrier including a chip carrier notch; and encapsulation material encapsulating the chip carrier and filling the chip carrier notch; wherein the outer circumference of the encapsulation material is free from a recess.
Abstract:
Various embodiments provide a method of reducing a sheet resistance in an electronic device encapsulated at least partially in an encapsulation material, wherein the method comprises: providing an electronic device comprising a multilayer structure and being at least partially encapsulated by an encapsulation material; and locally introducing energy into the multilayer structure for reducing a sheet resistance.
Abstract:
A system and a method for forming a packaged MEMS device are disclosed. In one embodiment a packaged MEMS device includes a MEMS device having a first main surface with a first area along a first direction and a second direction, a membrane disposed on the first main surface of the MEMS device and a backplate adjacent to the membrane. The packaged MEMS device further includes an encapsulation material that encapsulates the MEMS device and that defines a back volume, the back volume having a second area along the first direction and the second direction, wherein the first area is smaller than the second area.
Abstract:
A device includes an encapsulation material and a first lead and a second lead protruding out of a surface of the encapsulation material. A recess extends into the surface of the encapsulation material. An elevation is arranged on the surface of the encapsulation material. The first lead protrudes out of the elevation.
Abstract:
A method for manufacturing a chip arrangement, including disposing a chip over a carrier, wherein the bottom side of the chip is electrically connected to the first carrier side via one or more contact pads on the chip bottom side, disposing a first encapsulation material over the first carrier side, wherein the first encapsulation material at least partially surrounds the chip, and disposing a second encapsulation material over a second carrier side, wherein the second encapsulation material is in direct contact with the second carrier side.
Abstract:
In various embodiments, an integrated circuit is provided. The integrated circuit may include a semiconductor chip and an electrically conductive composite material fixed to the semiconductor chip, wherein the electrically conductive composite material may include a metal, and wherein a coefficient of thermal expansion (CTE) value of the electrically conductive composite material may be lower than the CTE value of the metal.