Abstract:
A method of electrochemical deposition (ECD) provides a barrier and a seed layer on a substrate. The surfaces of the substrate are pre-treated before a metal layer is electrochemically deposited thereon in an electrochemical plating cell with a physical or a chemical surface treatment process. The electrochemical plating cell is covered by a cap to prevent evaporation of the electrolyte solution. The electrochemical plating cell includes a substrate holder assembly with a lift seal, e.g., with a contact angle θ less than 90° between the lift seal and the substrate. The substrate holder assembly includes a substrate chuck at the rear side of the substrate.
Abstract:
A semiconductor structure having a via formed in a dielectric layer is provided. The exposed pores of the dielectric material along the sidewalls of the via are partially or completely sealed. Thereafter, one or more barrier layers may be formed and the via may be filled with a conductive material. The barrier layers formed over the sealing layer exhibits a more continuous barrier layer. The pores may be partially or completely sealed by performing, for example, a plasma process in an argon environment.
Abstract:
A via having a unique barrier layer structure is provided. In an embodiment, a via is formed by forming a barrier layer in a via. The barrier layer along the bottom of the via is partially or completely removed, and the via is filled with a conductive material. In another embodiment, a first barrier layer is formed along the bottom and sidewalls of the via. Thereafter, the first barrier layer along the bottom of the via is partially or completely removed, and a second barrier layer is formed.
Abstract:
A method for forming a barrier layer upon a copper containing conductor layer employs a hydrogen containing plasma treatment of the copper containing conductor layer followed by an argon plasma treatment of the copper containing conductor layer. The barrier layer may be formed employing a chemical vapor deposition method, such as an atomic layer deposition method. When the deposition method employs a metal and carbon containing source material, the two-step plasma pretreatment provides the barrier layer with enhanced electrical properties.
Abstract:
A method of forming a via in a low-k dielectric material and without the attendant via poisoning problem, or a dual damascene structure formed in the same dielectric and without the same problem are disclosed. The vertical walls of the via opening are first lined with a low-k protection layer and then covered with a barrier layer in order to prevent outgassing from the low-k dielectric material when copper is deposited into the via opening. In the case of a dual damascene structure, it is sufficient that the hole opening underlying the trench opening is first lined with the low-k protection layer. The resulting via or dual damascene structure is free of poisoned metal and, therefore, more reliable.
Abstract:
It is a general object of the present invention to provide an improved method of fabrication in the formation of an improved copper metal diffusion barrier layer having the structure, W/WSiN/WN, in single and dual damascene interconnect trench/contact via processing with 0.10 micron nodes for MOSFET and CMOS applications. The diffusion barrier is formed by depositing a tungsten nitride bottom layer, followed by an in situ SiH4/NH3 or SiH4/H2 soak forming a WSiN layer, and depositing a final top layer of tungsten. This invention is used to manufacture reliable metal interconnects and contact vias in the fabrication of MOSFET and CMOS devices for both logic and memory applications and the copper diffusion barrier formed, W/WSiN/WN, passes a stringent barrier thermal reliability test at 400° C. Pure single barrier layers, i.e., single layer WN, exhibit copper punch through or copper spiking during the stringent barrier thermal reliability test at 400° C.
Abstract:
Within a damascene method for forming a patterned conductor layer within an aperture defined by a patterned dielectric layer within a microelectronic fabrication, at least one of: (1) the patterned dielectric layer is thermally annealed at a temperature of from about 300 to about 450 degrees centigrade prior to forming within the aperture the patterned conductor layer; and (2) the aperture is etched with a plasma employing an etchant gas composition comprising hydrogen to form a laterally enlarged aperture prior to forming within the laterally enlarged aperture the patterned conductor layer. In accord with the method, the microelectronic fabrication is formed with decreased contact resistance and enhanced structural integrity.
Abstract:
A method includes bonding a first and a second package component on a top surface of a third package component, and dispensing a polymer. The polymer includes a first portion in a space between the first and the third package components, a second portion in a space between the second and the third package components, and a third portion in a gap between the first and the second package components. A curing step is then performed on the polymer. After the curing step, the third portion of the polymer is sawed to form a trench between the first and the second package components.
Abstract:
A system and method for stacking semiconductor devices in three dimensions is provided. In an embodiment two or more semiconductor dies are attached to a carrier and encapsulated. Connections of the two or more semiconductor dies are exposed, and the two or more semiconductor dies may be thinned to form connections on an opposite side. Additional semiconductor dies may then be placed in either an offset or overhanging position.
Abstract:
A method includes forming a first oxide layer on a surface of an integrated heat spreader, and forming a second oxide layer on top surfaces of fins, wherein the fins are parts of a heat sink. The integrated heat spreader is bonded to the heat sink through the bonding of the first oxide layer to the second oxide layer.