Abstract:
Various embodiments produce a semiconductor device, such a MEMS device, having metallized structures formed by replacing a semiconductor structure with a metal structure. Some embodiments expose a semiconductor structure to one or more a reacting gasses, such as gasses including tungsten or molybdenum.
Abstract:
Embodiments of the present invention provide systems and methods for depositing materials on either side of a freestanding film using selectively thermally-assisted chemical vapor deposition (STA-CVD), and structures formed using same. A freestanding film, which is suspended over a cavity defined in a substrate, is exposed to a fluidic CVD precursor that reacts to form a solid material when exposed to heat. The freestanding film is then selectively heated in the presence of the precursor. The CVD precursor preferentially deposits on the surface(s) of the freestanding film.
Abstract:
The present invention concerns a transducer element (1) which comprises a substrate (5) which comprises a cavity (23) extending through the substrate (5), a backplate (3) which is arranged in the cavity (23) of the substrate (5) and a membrane (2) which is movable relative to the backplate (3). Further, the present invention concerns a method of manufacturing a transducer element (1).
Abstract:
The present disclosure provides an embodiment of a micro-electro-mechanical system (MEMS) structure, the MEMS structure comprising a MEMS substrate; a first and second conductive plugs of a semiconductor material disposed on the MEMS substrate, wherein the first conductive plug is configured for electrical interconnection and the second conductive plug is configured as an anti-stiction bump; a MEMS device configured on the MEMS substrate and electrically coupled with the first conductive plug; and a cap substrate bonded to the MEMS substrate such that the MEMS device is enclosed therebetween.
Abstract:
A method of transferring graphene onto a target substrate having cavities and/or holes or onto a substrate having at least one water soluble layer is disclosed. It comprises the steps of: applying a protective layer (4) onto a sample comprising a stack (20) formed by a graphene monolayer (2) grown on a metal foil or on a metal thin film on a silicon substrate (1); attaching to said protective layer (4) a frame (5) comprising at least one outer border and at least one inner border, said frame (5) comprising a substrate and a thermal release adhesive polymer layer, the frame (5) providing integrity and allowing the handling of said sample; removing or detaching said metal foil or metal thin film on a silicon substrate (1); once the metal foil or metal thin film on a silicon substrate (1) has been removed or detached, drying the sample; depositing the sample onto a substrate (7); removing said frame (5) by cutting through said protective layer (4) at said at least one inner border of the frame (5) or by thermal release.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming a Micro-Electro-Mechanical System (MEMS) beam structure by venting both tungsten material and silicon material above and below the MEMS beam to form an upper cavity above the MEMS beam and a lower cavity structure below the MEMS beam.
Abstract:
There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a MEMS device, and technique of fabricating or manufacturing a MEMS device, having mechanical structures encapsulated in a chamber prior to final packaging. The material that encapsulates the mechanical structures, when deposited, includes one or more of the following attributes: low tensile stress, good step coverage, maintains its integrity when subjected to subsequent processing, does not significantly and/or adversely impact the performance characteristics of the mechanical structures in the chamber (if coated with the material during deposition), and/or facilitates integration with high-performance integrated circuits. In one embodiment, the material that encapsulates the mechanical structures is, for example, silicon (polycrystalline, amorphous or porous, whether doped or undoped), silicon carbide, silicon-germanium, germanium, or gallium-arsenide.
Abstract:
There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a MEMS device, and technique of fabricating or manufacturing a MEMS device, having mechanical structures encapsulated in a chamber prior to final packaging. The material that encapsulates the mechanical structures, when deposited, includes one or more of the following attributes: low tensile stress, good step coverage, maintains its integrity when subjected to subsequent processing, does not significantly and/or adversely impact the performance characteristics of the mechanical structures in the chamber (if coated with the material during deposition), and/or facilitates integration with high-performance integrated circuits. In one embodiment, the material that encapsulates the mechanical structures is, for example, silicon (polycrystalline, amorphous or porous, whether doped or undoped), silicon carbide, silicon-germanium, germanium, or gallium-arsenide.
Abstract:
In one embodiment, a method of forming a MEMS device includes providing a substrate, forming a sacrificial layer above the substrate layer, forming a silicon based working portion on the sacrificial layer, releasing the silicon based working portion from the sacrificial layer such that the working portion includes at least one exposed outer surface, forming a first layer of silicide forming metal on the at least one exposed outer surface of the silicon based working portion, and forming a first silicide layer with the first layer of silicide forming metal.
Abstract:
A method of fabricating a micro structure includes depositing amorphous silicon over a substrate having an electric circuit at a temperature below 550° C. to form a first structure portion, wherein at least part of the first structure portion is configured to receive an electrical signal from the electric circuit.