Abstract:
A method of forming an integrated circuit layer material is described, comprising depositing a layer of templates on a substrate, said template including a first binding site having an affinity for the substrate, a second binding site having an affinity for a target integrated circuit material and a protecting material coupled to the second binding site via a labile linkage to prevent the binding site from binding to the target integrated circuit material; exposing the template to an external stimulus to degrade the labile linkage; removing the protecting material; and binding the integrated circuit material to the second binding site.
Abstract:
The invention provides a lithographic method referred to as “dip pen” nanolithography (DPN). DPN utilizes a scanning probe microscope (SPM) tip (e.g., an atomic force microscope (AFM) tip) as a “pen,” a solid-state substrate (e.g., gold) as “paper,” and molecules with a chemical affinity for the solid-state substrate as “ink.” Capillary transport of molecules from the SPM tip to the solid substrate is used in DPN to directly write patterns consisting of a relatively small collection of molecules in submicrometer dimensions, making DPN useful in the fabrication of a variety of microscale and nanoscale devices. The invention also provides substrates patterned by DPN and kits for performing DPN.The invention further provides a method of performing AFM imaging in air. The method comprises coating an AFM tip with a hydrophobic compound, the hydrophobic compound being selected so that AFM imaging performed using the coated AFM tip is improved compared to AFM imaging performed using an uncoated AFM tip. Finally, the invention provides AFM tips coated with the hydrophobic compounds.
Abstract:
The invention provides a lithographic method referred to as “dip pen” nanolithography (DPN), which utilizes a scanning probe microscope (SPM) tip (e.g., an atomic force microscope (AFM) tip) as a “pen,” a solid-state substrate (e.g., gold) as “paper,” and molecules with a chemical affinity for the solid-state substrate as “ink.” Capillary transport of molecules from the SPM tip to the solid-state substrate is used in DPN to directly write patterns consisting of a relatively small collection of molecules in submicrometer dimensions, making DPN useful in the fabrication of a variety of microscale and nanoscale devices. The invention also provides substrates patterned by DPN, including submicrometer combinatorial arrays, and kits, devices and software for performing DPN. The invention further provides a method of performing AFM imaging in air. The method comprises coating an AFM tip with a hydrophobic compound, the hydrophobic compound being selected so that AFM imaging performed using the coated AFM tip is improved compared to AFM imaging preformed using an uncoated AFM tip. Finally, the invention provides AFM tips coated with the hydrophobic compounds.
Abstract:
The present invention provides patterned features of dimensions of less than 50 nm on a substrate. According to various embodiments, the features may be “Manhattan” style structures, have high aspect ratios, and/or have atomically smooth surfaces. The patterned features are made from polymer brushes grafted to a substrate. In some embodiments, the dimensions of the features may be determined by adjusting the grafting density and/or the molecular weight of the brushes. Once the brushes are patterned, the features can be shaped and reshaped with thermal or solvent treatments to achieve the desired profiles. The chemical nature of the polymer brush is thus independent of the patterning process, which allows for optimization of the polymer brush used for specific applications. Applications include masks for pattern transfer techniques such as reactive ion etching.
Abstract:
Aspects of the invention provide a method of controlling the solid-state property of the solid-phase surface or controlling forming reactive region. The method can be attained by using a device for ejecting droplets and a molecule for inclusion in a SAM which can be photo-patterned in a short period of time using low energy UV radiation, that is TV radiation having a relatively long wavelength. The invention can provide monomolecular film that is formed from molecules comprising a structural component (B) which is hydrophobic and/or lipophobic, and a structural component (A) which decomposes when irradiated with UV light having a wavelength in the range 254-400 nm to cleave away a part of the molecule having the structural component (B) leaving a residual hydrophilic structural component (C). Further, the invention can provide a method of forming a film pattern comprising; at least a step of ejecting a droplet, which includes a compound represented as the following Formula (0), on a solid-phase surface having a functional moiety: X—Y-Z (0) where, X represents a structure having reactivity to a functional moiety which exists at the solid-phase surface, Y represents a decomposable structure by itself and Z represents a structure which is capable of changing solid-state properties on the solid-phase surface or a reactive structure.
Abstract:
A photosensitive metal nanoparticle and a method of forming a conductive pattern using the same, wherein a self-assembled monolayer of a thiol compound or isocyanide compound having a terminal reactive group is formed on a surface of the metal nanoparticle and a photosensitive group is introduced to the terminal reactive group. The photosensitive metal nanoparticles can easily form a conductive film or pattern having excellent conductivity upon exposure to UV, and thus can be applied for antistatic washable sticky mats or shoes, conductive polyurethane printer rollers, electromagnetic interference shielding, etc.
Abstract:
Improved methods of forming a patterned self-assembled monolayer on a surface and derivative articles are provided. According to one method, an elastomeric stamp is deformed during and/or prior to using the stamp to print a self-assembled molecular monolayer on a surface. According to another method, during monolayer printing the surface is contacted with a liquid that is immiscible with the molecular monolayer-forming species to effect controlled reactive spreading of the monolayer on the surface. Methods of printing self-assembled molecular monolayers on nonplanar surfaces and derivative articles are provided, as are methods of etching surfaces patterned with self-assembled monolayers, including methods of etching silicon. Optical elements including flexible diffraction gratings, mirrors, and lenses are provided, as are methods for forming optical devices and other articles using lithographic molding. A method for controlling the shape of a liquid on the surface of an article is provided, involving applying the liquid to a self-assembled monolayer on the surface, and controlling the electrical potential of the surface.
Abstract:
A photosensitive metal nanoparticle and a method of forming a conductive pattern using the same, wherein a self-assembled monolayer of a thiol compound or isocyanide compound having a terminal reactive group is formed on a surface of the metal nanoparticle and a photosensitive group is introduced to the terminal reactive group. The photosensitive metal nanoparticles can easily form a conductive film or pattern having excellent conductivity upon exposure to UV, and thus can be applied for antistatic washable sticky mats or shoes, conductive polyurethane printer rollers, electromagnetic interference shielding, etc.
Abstract:
The present invention provides a pattern forming method comprising bonding a compound to a substrate, the compound having both a polymerization initiating moiety capable of undergoing photocleavage to initiate radical polymerization and a substrate bonding moiety, contacting a radical-polymerizable unsaturated compound with the substrate, and exposing light thereto patternwise, so as to form a region where a graft polymer is generated and a region where a graft polymer is not generated. A conductive pattern forming method applying the pattern forming method, and a conductive pattern material obtained by the conductive film forming method.
Abstract:
A self-replicating monolayer system employing polymerization of monomers or nanoparticle ensembles on a defined template provides a method for synthesis of two-dimensional single molecule polymers. Systems of self-replicating monolayers are used as templates for growth of inorganic colloids. A preferred embodiment employs SAM-based replication, wherein an initial monolayer is patterned and used as a template for self-assembly of a second monolayer by molecular recognition. The second monolayer is polymerized in place and the monolayers are separated to form a replicate. Both may then function as templates for monolayer assemblies. A generic self-replicating monomer unit comprises a polymerizable moiety attached by methylene repeats to a recognition element and an ending unit that will not interfere with the chosen recognition chemistry. The recognition element is self-complementary, unless a set of two replicating monomers with compatible cross-linking chemistry is employed. In a two-component replication system utilizing two different kinds of recognition chemistries, the initial template undergoes replication cycles, while maintaining two-dimensional segregation of the two types of monomers. During subsequent replications, the component domains experience little or no mixing, allowing the two-component, patterned assembly to be exponentially replicated. After replication, selective mineralization and/or electroless plating may produce a two-dimensional inorganic sheet having patterned domains within it.