Abstract:
Systems and methods of observing a sample in a multi-beam apparatus are disclosed. The multi-beam apparatus may include an electron source configured to generate a primary electron beam, a pre-current limiting aperture array comprising a plurality of apertures and configured to form a plurality of beamlets from the primary electron beam, each of the plurality of beamlets having an associated beam current, a condenser lens configured to collimate each of the plurality of beamlets, a beam-limiting unit configured to modify the associated beam current of each of the plurality of beamlets, and a sector magnet unit configured to direct each of the plurality of beamlets to form a crossover within or at least near an objective lens that is configured to focus each of the plurality of beamlets onto a surface of the sample and to form a plurality of probe spots thereon.
Abstract:
A multi-beam apparatus for observing a sample with high resolution and high throughput and in flexibly varying observing conditions is proposed. The apparatus uses a movable collimating lens to flexibly vary the currents of the plural probe spots without influencing the intervals thereof, a new source-conversion unit to form the plural images of the single electron source and compensate off-axis aberrations of the plural probe spots with respect to observing conditions, and a pre-beamlet-forming means to reduce the strong Coulomb effect due to the primary-electron beam.
Abstract:
A digital pattern generator has a MEMS substrate with a plurality of doping layers and a plurality of insulating layers between respective doping layers. A plurality of lenslets are formed as holes through the substrate. A charge drain coating is applied to the inner surfaces of the lenslets. The charge drain coating drains electrons that come into contact with the charge drain coating so that the performance of the digital pattern generator will not be hindered by electron charge build-up. The charge drain coating includes a doping material that coalesces into clusters that are embedded within a high dielectric insulating material.
Abstract:
A charged particle multi-beam lithography system includes an illumination sub-system that is configured to generate a charged particle beam; and multiple plates with a first aperture through the plates. The plates and the first aperture are configured to form a charged particle doublet. The system further includes a blanker having a second aperture whose footprint is smaller than that of the first aperture. The charged particle doublet is configured to demagnify a portion of the charged particle beam passing through the first aperture, thereby producing a demagnified beamlet. The blanker is configured to receive the demagnified beamlet from the charged particle doublet, and is further configured to conditionally allow the demagnified beamlet to travel along a desired path.
Abstract:
The present invention provides apparatus for an imaging system comprising a multitude of imaging elements upon a substrate. In some embodiments the substrate may be approximately round with a radius of approximately one inch. Various methods relating to using and producing an imaging system are discussed.
Abstract:
An X-ray apparatus that creates a virtual source having a narrow energy bandwidth and enables a high-resolution X-ray diffraction measurement; a method of using the same; and an X-ray irradiation method are provided. An X-ray apparatus 100 includes a monochromator 105 that focuses a divergent X-ray beam while dispersing it and a selection part 107 that is installed in a condensing position of the condensed X-ray beam for selecting an X-ray beam having a wavelength in a specific range, allowing it to pass through, and creating a virtual source. With this arrangement, it is possible to create a virtual source having a narrow energy bandwidth at a focal point 110 and by means of the virtual source a high-resolution X-ray diffraction measurement is available. By using the X-ray apparatus 100, it is possible to sufficiently separate an X-ray beam having such an extremely narrow energy bandwidth as, for example, Kα1 ray from Kα2 ray. In addition, it is also possible to cut out part of continuous X-ray beams to create a virtual source.
Abstract:
An apparatus for use in a charged particle multi-beam lithography system is disclosed. The apparatus includes a plurality of charged particle doublets each having a first aperture and each configured to demagnify a beamlet incident upon the first aperture thereby producing a demagnified beamlet. The apparatus further includes a plurality of charged particle lenses each associated with one of the charged particle doublets, each having a second aperture, and each configured to receive the demagnified beamlet from the associated charged particle doublet and to realize one of two states: a switched-on state, wherein the demagnified beamlet is allowed to travel along a desired path, and a switched-off state, wherein the demagnified beamlet is prevented from traveling along the desired path. In embodiments, the first aperture is greater than the second aperture, thereby improving particle beam efficiency in the charged particle multi-beam lithography system.
Abstract:
The invention relates to a charged particle optical system comprising a beamlet generator for generating a plurality of charged particle beamlets, an electrostatic deflection system for deflecting the beamlets, and a projection lens system for directing the beamlets from the beamlet generator towards the target. The electrostatic deflection system comprises a first electrostatic deflector and a second electrostatic deflector for scanning charged particle beamlets over the target. The second electrostatic deflector is located behind the first electrostatic deflector so that, during operation of the system, a beamlet generated by the beamlet generator passes both of the electrostatic deflectors. During operation of the first and second electrostatic deflectors the system is adapted to apply voltages on the first electrostatic deflector and the second electrostatic deflector of opposite sign.
Abstract:
Disclosed is a device for sustaining different vacuum degrees for an electron column, including an electron emitter, a lens part, and a housing for securing them, to maintain the electron column and a sample under different vacuum degrees. The device comprises a column housing coupling part coupled to the housing to isolate a vacuum; a hollow part defined through the center portion of the device to allow an electron beam emitted from the electron column to pass therethrough; and a vacuum isolation part having a structure of a gasket for vacuum coupling, wherein a difference of no less than 10 torr in a vacuum degree is maintained between both sides of the device by selecting an appropriate diameter of a lens electrode layer which is finally positioned in a path along which the electron beam is emitted or by using the hollow part.
Abstract:
An ultra-miniaturized electron optical microcolumn is provided. The electron optical microcolumn includes an electron-emitting source emitting electrons using a field emission principle, an extraction electrode causing the emission of electrons from the electron-emitting source, a focusing electrode to which voltage is flexibly applied in response to a working distance to a target for regulating a focusing force of electron beams emitted from the electron-emitting source, an acceleration electrode accelerating electrons emitted by the extraction electrode, a limit electrode regulating an amount and a size of electron beams using electrons accelerated by the acceleration electrode, and a deflector deflecting electron beams towards the target.