Abstract:
A core-shell nanoparticle is provided that includes a core comprising a first isotope of an element; an isolation layer surrounding the core; and a shell layer surrounding the isolation layer, wherein the shell layer comprises a second isotope of the element, with the first isotope being different than the second isotope. Methods are also provided for forming such core-shell nanoparticles.
Abstract:
A catalysed substrate monolith 12 for use in treating exhaust gas emitted from a lean-burn internal combustion engine, which catalysed substrate monolith 12 comprising a first washcoat coating 16 and a second washcoat coating 18, wherein the first washcoat coating comprises a catalyst composition comprising at least one platinum group metal (PGM) and at least one support material for the at least one PGM, wherein at least one PGM in the first washcoat coating is liable to volatilise when the first washcoat coating is exposed to relatively extreme conditions including relatively high temperatures, wherein the second washcoat coating comprises at least one metal oxide for trapping volatilised PGM and wherein the second washcoat coating is oriented to contact exhaust gas that has contacted the first washcoat coating.
Abstract:
In an embodiment: a method of making syngas in a metal reactor can comprise introducing carbon dioxide and hydrogen to the metal reactor in the presence of a catalyst to form the syngas, wherein the metal reactor comprises nickel and wherein the carbon dioxide and the hydrogen are in physical contact with a wall of the metal reactor; and passivating the nickel with a sulfur containing compound.
Abstract:
In an embodiment, a method of producing carbonate can comprise: reacting a feed comprising carbon monoxide and chlorine in a tube of a reactor to produce a product composition comprising phosgene, wherein the tube has a particulate catalyst contained therein, wherein a thermally conductive material separate from the tube contacts at least a portion of the particulate catalyst, and wherein carbon tetrachloride is present in the product composition in an amount of 0 to 10 ppm by volume based on the volume of the phosgene; and reacting a monohydroxy compound with the phosgene to produce the carbonate.
Abstract:
The invention is in the field of catalysis. More specifically, the invention pertains to catalytic hydrogenation processes and catalysts used therein. According to the invention there is provided a process for the hydrogenation of hydrocarbon resins, in particular hydrocarbon resin feeds with a relatively high sulfur content using a cobalt promoted nickel on silica/alumina catalyst, the catalyst per se, and the process of preparing said catalyst.
Abstract:
A method of preparing a spray dried catalyst by combining spray dried catalyst particles with wax so the spray dried catalyst particles are coated with wax, yielding wax coated catalyst particles, and shaping the wax coated catalyst to provide shaped wax coated catalyst. A method of activating Fischer-Tropsch catalyst particles containing oxides by contacting the catalyst particles with a reducing gas in an activation vessel to produce an activated catalyst, wherein contacting is performed in the absence of a liquid medium under activation conditions. A system for activating a Fischer-Tropsch catalyst containing an activation reactor configured to introduce an activation gas to a fixed or fluidized bed of the Fischer-Tropsch catalyst in the absence of a liquid medium and at least one separation device configured to separate a gas stream comprising entrained catalyst fines having an average particle size below a desired cutoff size from the activation reactor.
Abstract:
Aqueous catalysts of nanoparticles of precious metals and stabilizers of flavonoid derivatives are used to electrolessly plate metal on non-conductive substrates. Such substrates include printed circuit boards.
Abstract:
A method for preparing a silica-modified catalyst support is described including: (I) applying an alkyl silicate to the surface of a porous support material in an amount to produce a silica content of the silica-modified catalyst support, expressed as Si, in the range 0.25 to 15% by weight, (ii) optionally drying the resulting silicate-modified support, (iii) treating the support with water, (iv) drying the resulting water-treated support, and (v) calcining the dried material to form the silica-modified catalyst support.
Abstract:
A method for the oxidative coupling of hydrocarbons includes providing an oxidative catalyst inside a reactor and carrying out the oxidative coupling reaction under a set of reaction conditions. The reactor surfaces that contact the reactants and products do not provide a significant detrimental catalyzing effect. In an embodiment the reactor contains an inert lining or a portion of the reactor inner surface is treated to reduce the detrimental catalytic effects. In an embodiment the reactor contains a lining that includes an oxidative catalyst.
Abstract:
Systems and Methods for manufacturing ZPGM catalysts systems that may allow the prevention of formation or the conversion of corrosion causing compounds, such as hexavalent chromium compounds, within ZPGM catalyst systems are disclosed. ZPGM catalysts systems, may include metallic substrate, which may include alloys of iron and chromium, a washcoat and an overcoat. Disclosed manufacturing processes may include a thermal decomposition of hexavalent chromium compounds which may allow the decomposition of such compounds into trivalent chromium compounds, and may also produce metallic catalyst, such as silver.