Abstract:
Semiconductor devices with underfill control features, and associated systems and methods. A representative system includes a substrate having a substrate surface and a cavity in the substrate surface, and a semiconductor device having a device surface facing toward the substrate surface. The semiconductor device further includes at least one circuit element electrically coupled to a conductive structure. The conductive structure is electrically connected to the substrate, and the semiconductor device further has a non-conductive material positioned adjacent the conductive structure and aligned with the cavity of the substrate. An underfill material is positioned between the substrate and the semiconductor device. In other embodiments, in addition to or in lieu of the con-conductive material, a first conductive structure is connected within the cavity, and a second conductive structure connected outside the cavity. The first conductive structure extends away from the device surface a greater distance than does the second conductive structure.
Abstract:
Proximity coupling interconnect packaging systems and methods. A semiconductor package assembly comprises a substrate, a first semiconductor die disposed adjacent the substrate, and a second semiconductor die stacked over the first semiconductor die. There is at least one proximity coupling interconnect between the first semiconductor die and the second semiconductor die, the proximity coupling interconnect comprising a first conductive pad on the first coupling face on the first semiconductor die and a second conductive pad on a second coupling face of the second semiconductor die, the second conductive pad spaced apart from the first conductive pad by a gap distance and aligned with the first conductive pad. An electrical connector is positioned laterally apart from the proximity coupling interconnect and extends between the second semiconductor die and the substrate, the position of the electrical connector defining the alignment of the first conductive pad and the second conductive pad.
Abstract:
Semiconductor dies having interconnect structures formed thereon, and associated systems and methods, are disclosed herein. In one embodiment, an interconnect structure includes a conductive material electrically coupled to an electrically conductive contact of a semiconductor die. The conductive material includes a first portion vertically aligned with the conductive contact, and a second portion that extends laterally away from the conductive contact. A solder material is disposed on the second portion of the interconnect structure such that the solder material is at least partially laterally offset from the conductive contact of the semiconductor die. In some embodiments, an interconnect structure can further include a containment layer that prevents wicking or other undesirable movement of the solder material during a reflow process.
Abstract:
Proximity coupling interconnect packaging systems and methods. A semiconductor package assembly comprises a substrate, a first semiconductor die disposed adjacent the substrate, and a second semiconductor die stacked over the first semiconductor die. There is at least one proximity coupling interconnect between the first semiconductor die and the second semiconductor die, the proximity coupling interconnect comprising a first conductive pad on the first coupling face on the first semiconductor die and a second conductive pad on a second coupling face of the second semiconductor die, the second conductive pad spaced apart from the first conductive pad by a gap distance and aligned with the first conductive pad. An electrical connector is positioned laterally apart from the proximity coupling interconnect and extends between the second semiconductor die and the substrate, the position of the electrical connector defining the alignment of the first conductive pad and the second conductive pad.
Abstract:
A semiconductor die assembly having a solderball wirebonded to a substrate. As an example, the semiconductor die assembly may include the solderball attached to a bond pad on a face surface of a memory die. A non-face surface of the memory die can be attached to the substrate. A wire can be wirebonded to the solderball at a first end of the wire and connected to the substrate at a second end of the wire.
Abstract:
Proximity coupling interconnect packaging systems and methods. A semiconductor package assembly comprises a substrate, a first semiconductor die disposed adjacent the substrate, and a second semiconductor die stacked over the first semiconductor die. There is at least one proximity coupling interconnect between the first semiconductor die and the second semiconductor die, the proximity coupling interconnect comprising a first conductive pad on the first coupling face on the first semiconductor die and a second conductive pad on a second coupling face of the second semiconductor die, the second conductive pad spaced apart from the first conductive pad by a gap distance and aligned with the first conductive pad. An electrical connector is positioned laterally apart from the proximity coupling interconnect and extends between the second semiconductor die and the substrate, the position of the electrical connector defining the alignment of the first conductive pad and the second conductive pad.
Abstract:
Semiconductor devices and device packages include at least one semiconductor die electrically coupled to a substrate through a plurality of conductive structures. The at least one semiconductor die may be a plurality of memory dice, and the substrate may be a logic die. An underfill material disposed between the at least one semiconductor die and the substrate may include a thermally conductive material. An electrically insulating material is disposed between the plurality of conductive structures and the underfill material. Methods of attaching a semiconductor die to a substrate, such as for forming semiconductor device packages, include covering or coating at least an outer side surface of conductive structures, electrically coupling the semiconductor die to the substrate with an electrically insulating material, and disposing a thermally conductive material between the semiconductor die and the substrate.
Abstract:
A semiconductor die assembly having a solderball wirebonded to a substrate. As an example, the semiconductor die assembly may include the solderball attached to a bond pad on a face surface of a memory die. A non-face surface of the memory die can be attached to the substrate. A wire can be wirebonded to the solderball at a first end of the wire and connected to the substrate at a second end of the wire.
Abstract:
Semiconductor devices and device packages include at least one semiconductor die electrically coupled to a substrate through a plurality of conductive structures. The at least one semiconductor die may be a plurality of memory dice, and the substrate may be a logic die. An underfill material disposed between the at least one semiconductor die and the substrate may include a thermally conductive material. An electrically insulating material is disposed between the plurality of conductive structures and the underfill material. Methods of attaching a semiconductor die to a substrate, such as for forming semiconductor device packages, include covering or coating at least an outer side surface of conductive structures, electrically coupling the semiconductor die to the substrate with an electrically insulating material, and disposing a thermally conductive material between the semiconductor die and the substrate.
Abstract:
Semiconductor assemblies including thermal management configurations for reducing heat transfer between overlapping devices and associated systems and methods are disclosed herein. A semiconductor assembly may comprise a supporting structure and a device with a thermal management layer disposed between the supporting structure and the device. The thermal management layer may be configured to reduce heat transfer between the supporting structure and the device.