Abstract:
In some embodiments, a semiconductor device package assembly may include a first substrate. The semiconductor device package assembly may include a first die electrically connected to the first substrate such that the first die is directly bonded to the first substrate. The semiconductor device package assembly may include a second substrate directly bonded to a surface of the first die. The semiconductor device package assembly may include an electronic memory module. The electronic memory module may be directly bonded to the second substrate. The semiconductor device package assembly may include a thermally conductive material directly applied to the electronic memory module. The semiconductor device package assembly may include a heat spreader directly bonded to the thermally conductive material. The heat spreader may function to transfer heat from the first die and the electronic memory module through the heat spreader from the first side to the second side.
Abstract:
A sensor includes a sensor array formed on a first side of a substrate and at least one circuit operative to communicate with the sensor array formed on a second side of the substrate. At least one via extends through the substrate to electrically connect the sensor array to the at least one circuit. Placing the at least one circuit on the second side of the substrate allows the sensor array to occupy substantially all of the first side of the substrate.
Abstract:
A bottom package for a PoP (package-on-package) may be formed with a reinforcement layer supporting a thin or coreless substrate. The reinforcement layer may provide stiffness and rigidity to the substrate to increase the stiffness and rigidity of the bottom package and provide better handling of the substrate. The reinforcement layer may be formed using core material, a laminate layer, and a metal layer. The substrate may be formed on the reinforcement layer. The reinforcement layer may include an opening sized to accommodate a die. The die may be coupled to an exposed surface of the substrate in the opening. Metal filled vias through the reinforcement layer may be used to couple the substrate to a top package.
Abstract:
A PoP (package-on-package) package includes a bottom package coupled to a top package. Terminals on the top of the bottom package are coupled to terminals on the bottom of the top package with an electrically insulating material located between the upper surface of the bottom package and the lower surface of the top package. The bottom package and the top package are coupled during a process that applies force to bring the packages together while heating the packages.
Abstract:
A PoP (package-on-package) package includes a bottom package coupled to a top package. Terminals on the top of the bottom package are coupled to terminals on the bottom of the top package with an electrically insulating material located between the upper surface of the bottom package and the lower surface of the top package. The bottom package and the top package are coupled during a process that applies force to bring the packages together while heating the packages.
Abstract:
A semiconductor device package is described that includes a power consuming device (such as an SOC device). The power consuming device may include one or more current consuming elements. A passive device may be coupled to the power consuming device. The passive device may include a plurality of passive elements formed on a semiconductor substrate. The passive elements may be arranged in an array of structures on the semiconductor substrate. The power consuming device and the passive device may be coupled using one or more terminals. The passive device and power consuming device coupling may be configured in such a way that the power consuming device determines functionally the way the passive device elements will be used.
Abstract:
A PoP (package-on-package) package includes a bottom package coupled to a top package. Terminals on the top of the bottom package are coupled to terminals on the bottom of the top package with an electrically insulating material located between the upper surface of the bottom package and the lower surface of the top package. The bottom package and the top package are coupled during a process that applies force to bring the packages together while heating the packages.
Abstract:
Multi-die structures and methods of fabrication are described. In an embodiment, a multi-die structure includes a first die, a second die, and die-to-die routing connecting the first die to the second die. The die-to-die interconnection may be monolithically integrated as a chip-level die-to-die routing, or external package-level die-to-die routing.
Abstract:
Integrated circuit (IC) structure, IC die structures and methods of fabrication are described in which one or more edge recesses are formed in an IC die. Upon direct bonding to an electronic component, a molding compound can be applied to the bonded structure where the molding compound fills the one or more edge recesses and encroached underneath the IC die and between the IC die and the electronic component.
Abstract:
Electronic package structures and systems are described in which a 3D interconnect structure is integrated into a package redistribution layer and/or chiplet for power and signal delivery to a die. Such structures may significantly improve input output (IO) density and routing quality for signals, while keeping power delivery feasible.