Abstract:
Embodiments herein describe apparatuses, systems, and methods for signaling to support downlink coordinated multipoint (CoMP) communications with a user equipment (UE) in a wireless communication network. In embodiments, the UE may be configured with a plurality of channel state information (CSI) processes (e.g., via radio resource control (RRC) signaling) to use for providing CSI feedback to an evolved Node B (eNB) to support downlink CoMP communications. The UE may be configured with a plurality of sets of CSI processes. The UE may further receive a downlink control information (DCI) message from the eNB that indicates one of the configured sets of CSI processes on which the UE is to provide CSI feedback to the UE. The UE may generate the CSI feedback for the indicated set of CSI processes, and transmit the CSI feedback to the eNB in a CSI report.
Abstract:
Embodiments of methods and apparatus for determining and/or quantizing a beamforming matrix are disclosed. In some embodiments, the determining and/or quantizing of the beamforming matrix may include the use of a base codebook and a differential codebook. Additional variants and embodiments are also disclosed.
Abstract:
A User Equipment and an eNodeB system are configured for performing interference mitigation in the UE. Input circuitry in the wireless communication device receives an OFDM downlink channel signal associated with a serving cell and receives downlink control information for an interfering cell. The downlink control information is used by the UE to perform channel estimation for the interfering cell. An interference mitigation module is provided for calculating an interference-mitigated version of the received channel signal using estimated channel transfer functions for both the serving cell and the interfering cell, power control parameters and using set of modulation constellation points corresponding to the OFDM downlink channel. Other embodiments may be described and claimed.
Abstract:
Embodiments of a mobile device transmitter and methods for transmitting signals in different signal dimensions are generally disclosed herein. The mobile device transmitter comprises a mapper to map a block of two or more input modulation symbols to different signal dimensions comprising two or more spatial dimensions, and linear transform circuitry to perform a linear transform on the block of mapped input modulation symbols to generate a block of precoded complex-valued output symbols such that each output symbol carries some information of more than one input modulation symbol. The mobile device also comprises transmitter circuitry to generate time-domain signals from the blocks of precoded complex-valued output symbols for each of the spatial dimensions for transmission using the two or more antennas. The precoded complex-valued output symbols are mapped to different signal dimensions comprising at least different frequency dimensions prior to transmission.
Abstract:
A communication device communicates with other communication devices in a wireless network using a first and a second frequency band. In accordance with some embodiments, inter-band beamforming assistance may be provided by the lower frequency band.
Abstract:
Technology for selecting physical resource blocks (PRB) for cell-specific reference signal (CRS) transmission for a new carrier type (NCT) is disclosed. In an example, device operable in an evolved Node B (eNB) to select physical resource blocks (PRB) for cell-specific reference signal (CRS) transmission for a new carrier type (NCT) can include computer circuitry configured to: Determine a frequency bandwidth for the NCT; and select a CRS pattern of PRBs for a transmission of the CRS in the frequency bandwidth, wherein the frequency bandwidth includes PRBs with CRS and PRBs without CRS.
Abstract:
Technology for a user equipment (UE) to report periodic channel state information (CSI) is disclosed. The UE can generate a plurality of CSI reports for serving cells for transmission in a subframe. Each CSI report can correspond to a physical uplink control channel (PUCCH) reporting type among a plurality of CSI processes having a CSI process index (CSIProcessIndex) and a serving cell index (ServCellIndex). The UE can determine different priorities corresponding to each of the plurality of PUCCH reporting types. The UE can drop CSI reports corresponding to all CSI processes except a CSI process having the lowest CSIProcessIndex. The UE can drop CSI reports corresponding to all ServCellIndexes except a CSI report with the lowest ServCellIndex. The UE can multiplex at least one non-colliding CSI report from among CSI reports that are not dropped and hybrid automatic repeat request-acknowledgement (HARQ-ACK) feedback bits for transmission to an eNodeB.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of wireless backhaul and access communication via a common antenna array. For example, an apparatus may include a wireless communication unit to control an antenna array to form one or more first beams for communicating over one or more access links and to form one or more second beams for communicating over one or more backhaul links, the access links including wireless communication links between a wireless communication node and one or more mobile devices, and the backhaul links including wireless communication links between the wireless node and one or more other wireless communication nodes.
Abstract:
Embodiments for providing fast modulation and coding scheme adaptation for LTE regardless of transmission using single-user multiple-input and multiple-output (SU-MIMO) or multiple-user multiple-input and multiple-output are generally described herein. In some embodiments, channel state information reference signals are sent to user equipment by a node. First channel quality indication feedback based on the channel state information reference signals is received from the user equipment. Physical downlink shared channel data and demodulation reference signals are transmitted using a first modulation and coding scheme based on the first channel quality indication feedback. Second channel quality indication feedback based on measurements performed by the user equipment on the demodulation reference signals is received by a node. Physical downlink shared channel data is transmitted using a second modulation and coding scheme based on the second channel quality indication feedback.
Abstract:
Methods, apparatuses, and systems are described related to interference averaging to generate feedback information and interference averaging to demodulate receives signals. In embodiments, an evolved Node B (eNB) may transmit interference averaging information to a user equipment (UE) including a time domain averaging indicator indicating a time domain averaging window to be used by the UE for averaging interference measurements in a time domain or a frequency domain averaging indicator to indicate a frequency domain averaging window to be used by the UE for averaging interference measurements in a frequency domain. Additionally, or alternatively, the eNB may transmit an interference resource group (IRG) indicator to the UE to indicate an IRG over which the UE is to perform interference averaging to facilitate demodulation of signals received by the UE from the eNB.