Abstract:
The present invention relates to CNT filled polymer composite system possessing a high thermal conductivity and high temperature stability so that it is a highly thermally conductive for use in 3D and 4D integration for joining device sub-laminate layers. The CNT/polymer composite also has a CTE close to that of Si, enabling a reduced wafer structural warping during high temperature processing cycling. The composition is tailored to be suitable for coating, curing and patterning by means conventionally known in the art.
Abstract:
A substrate with a switchable surface has been developed that can rapidly switch its surface character such as between two distinct liquid-repellent modes: (1) a superhydrophobic mode and (2) a slippery mode. Such surfaces have demonstrated adaptive liquid repellency and water harvesting capabilities.
Abstract:
Provided is an ε-iron oxide type ferromagnetic powder with a powder pH within a range of 4.8 to 6.8; and a method for manufacturing the ε-iron oxide type ferromagnetic powder and a composition containing at least the ε-iron oxide type ferromagnetic powder and a solvent.
Abstract:
Compositions comprising ferrosoferric oxide dispersed in a polymer matrix. Such compositions may exhibit properties suitable for achieving both resistive field grading effects and capacitive field grading effects e.g. in electrical stress control devices and surge arrestor devices. Such compositions may optionally include one or more capacitive field grading additives and/or conductive additives.
Abstract:
A coil component including: a magnetic core that contains an Fe-based magnetic powder and a binding agent, the Fe-based magnetic powder having an insulator film and having a volume resistivity of 107 Ω·cm or more; and a coil conductor. The average particle size D50 of the Fe-based magnetic powder is 5 μm or smaller and the magnetic permeability of the magnetic core is 5 or more.
Abstract:
The present invention relates to cellulose nanofibrils decorated with magnetic nanoparticles as well as a method for the preparation thereof and a material comprising the nanofibrils.
Abstract:
In order to simplify a folding process and render it more precise the invention suggests a method for folding a border of a decorative layer about an edge of a carrier part, in which the border is at least partially folded about this edge via a folding slide, and in which a fixing means in the form of an adhesive that can be activated is used to fix the border of the decorative layer in the folded state at a carrier part, with the method being characterized in that an induction source is used for activating the adhesive, which generates electromagnetic alternating fields causing eddies in an induction receiver which are converted into thermal energy.
Abstract:
A multi-layered structure comprising an induction activation layer comprising a blend of (a) a first thermoplastic polymer, (b) a plurality of first particles, each said first particle comprising (i) a core comprising one or more magnetic materials and (ii) a shell comprising silicon dioxide; and (c) optionally a plurality of second particles, each said second particle comprising heat conducting particles; and a sealant, wherein the sealant exhibits a melting point equal to or lower than any other layer in the multi-layered structure, wherein the induction activation layer and sealant are in direct or indirect thermal contact is provided.
Abstract:
The invention includes a composite material comprising magnetic field responsive particles distributed in a reversibly crosslinked polymer, wherein the reversibly crosslinked polymer includes thermally reversible bonds. In one embodiment, exposing the composite material to an electromagnetic field allows for crack-healing, remolding and/or bonding of the material.
Abstract:
Illustrative embodiments of anisotropic conductive adhesive (ACA) and associated methods are disclosed. In one illustrative embodiment, the ACA may comprise a binder curable using UV light and a plurality of particles suspended in the binder. Each of the plurality of particles may comprise a ferromagnetic material coated with a layer of electrically conductive material. The electrically conducting material may form electrically conductive and isolated parallel paths when the ACA is cured using UV light after being subjected to a magnetic field.