Abstract:
A hydrogen generator comprising a hydrogen membrane reactor, a fuel supply, a reaction fuel supply line, an air supply, an air supply line, a combustion fuel supply line, a tail gas supply line, a combustion by-product line for transporting combustion by-products from the combustion chamber, and a reaction product line. A membrane assembly to be joined to a reactor chamber of a hydrogen generator, which comprises a membrane; and a membrane support comprising a sintered porous metal. A reactor assembly comprising a reaction chamber containing a porous metal substrate, two membrane assemblies, a fuel supply, a reaction fuel supply line, and a tail gas supply line and a reaction product line. Methods associated with the hydrogen generator, membrane assembly and reactor assembly.
Abstract:
A method for reducing the surface variance of a porous metal substrate. The method does not significantly reduce the bulk porosity. The method can be used to reduce the surface pore diameter. A membrane, can be deposited on the reduced variance surface to form a separation membrane.
Abstract:
A method of and system for reducing engine environmental atmospheric pollution emissions from a vehicle having a combustion engine utilizing hydrocarbon fuel for at least one of propulsion and auxiliary electrical power is disclosed. The method basically includes providing an unprocessed bulk fuel storage container and a clean processed fuel tank on the vehicle, supplying the engine for propulsion with fuel from the unprocessed fuel storage container when the vehicle is beyond a predetermined distance from an area having environmental restrictions passing a portion of unprocessed fuel through a desulphurization process to fill a clean fuel storage container while the vehicle is in motion and supplying the combustion engine for one of propulsion and auxiliary electrical power from clean fuel in the processed fuel storage container when the vehicle is within an area having environmental restrictions.
Abstract:
The present disclosure is related to methods and apparatus that provide safe storage of volatile compounds or elements, utilizing storage configurations that take advantage of the diffusibility and release characteristics of cell-based materials, such as foam materials.
Abstract:
A method and device for loading a catalyst into a chamber. The catalyst loading is well suited for production of hydrogen producing microreactors. The catalyst is coated onto a strip which is mountable within the chamber.
Abstract:
Safe storage of volatile compounds or elements is provided by utilizing storage configurations that take advantage of the diffusibility and release characteristics of cell-based materials, such as foam materials. Such configurations may provide storage of hazardous, liquefied gases in closed-cell foam material. Release of gas/liquid from the foam is restricted by the need for the gas to diffuse through the closed cells. Because rapid release is prevented, storage safety is greatly improved.
Abstract:
A method of and system for reducing engine environmental atmospheric pollution emissions from a vehicle having a combustion engine utilizing hydrocarbon fuel for at least one of propulsion and auxiliary electrical power is disclosed. The method basically includes providing an unprocessed bulk fuel storage container and a clean processed fuel tank on the vehicle, supplying the engine for propulsion with fuel from the unprocessed fuel storage container when the vehicle is beyond a predetermined distance from an area having environmental restrictions passing a portion of unprocessed fuel through a desulphurization process to fill a clean fuel storage container while the vehicle is in motion and supplying the combustion engine for one of propulsion and auxiliary electrical power from clean fuel in the processed fuel storage container when the vehicle is within an area having environmental restrictions.
Abstract:
The present disclosure provides teachings relating to ammonia-based hydrogen generation apparatus and associated methods of use. Exemplary methods and apparatus comprise a thermocatalytic hydrogen generation reactor which includes a reaction chamber containing a catalyst-coated substrate, and a combustion chamber containing a catalyst-coated substrate. Exemplary catalyst-coated substrates include, but are not limited to, metal foam, monolith, mesh, ceramic foam or ceramic monolith.
Abstract:
A method of applying a coating the inner surface of a metal reactor chamber whereby coking resulting from the production of hydrogen from reforming hydrocarbons is reduced.
Abstract:
A method of preparing the surface of a porous metal substrate to receive a membrane. The method does not substantially decrease the average bulk porosity of the metal substrate. A hydrogen separation membrane supported on the porous metal substrate. A cold spray is used to reduce surface variance. Exposure to an ion beam may also be used after application on the cold spray to prepare the surface of the substrate for membrane deposition.