Abstract:
Method and composition for detecting one or more selected polynucleotide regions in a target polynucleotide. In the method, a mixture of sequence-specific probes are reacted with the target polynucleotide under hybridization conditions, and the hybridized probes are treated to selectively modify those probes which are bound to the target polynucleotide in a base-specific manner. The resulting labeled probes include a polymer chain which imparts to each different-sequence probe, a distinctive ratio of charge/translational frictional drag, and a detectable label. The labeled probes are fractionated by electrophoresis in a non-sieving matrix, and the presence of one or more selected sequences in the target polynucleotide are detected according to the observed electrophoretic migration rates of the labeled probes in a non-sieving medium.
Abstract:
An automatic (auto) tape searching method which searches the required tape portion fast and automatically by repeating a sequence of operational procedures. The auto tape searching method comprises: a first stage which initializes the port of a microcomputer and the content of a RAM (random access memory), sets the initial values, and controls interrupts at a power-on reset of a video tape recording system; a second stage which checks key input and, for auto random search (ARS) key, performs the auto random search function; a third stage which performs mode checking and, if a present mode needs to accompany the mechanism operation, controls the present mode; and a fourth stage which switches the mode and checks the sensor and an emergency state to make the system in stable condition.
Abstract:
A system and method for analyzing nucleic acids is presented herein. The system can include a nanowire assembly including a plurality of nanowires. In some embodiments, at least two nanowires can be coupled to a different probe corresponding to a different sequence version of a polymorphism. The system can include a reagent delivery system capable of delivering a template polymorphic nucleotide, an extension nucleic acid, and an enzyme to the nanowire assembly. The system can include an electrical detector configured to measure an electrical characteristic of the nanowire assembly and/or a controller in communication with the reagent delivery system. In some embodiments, the electrical detector can be configured to collect data corresponding to changes in the electrical characteristic in response to contact with the template polymorphic nucleotide, the extension nucleic acid, and the enzyme.
Abstract:
A chemically-enhanced primer is provided comprising a negatively charged moiety (NCM), an oligonucleotide sequence having a) non-nuclease resistant inter-nucleotide linkages or b) at least one nuclease resistance inter-nucleotide linkage. The chemically-enhanced primer can be used for sequencing and fragment analysis. Methods for synthesizing the chemically-enhanced primer as well as a method of preparing DNA for sequencing, a method of sequencing DNA, and kits containing the chemically-enhanced primer are also provided. The method of sequencing DNA can comprise contacting amplification reaction products with the composition wherein excess amplification primer is degraded by the nuclease and the chemically-enhanced primer is essentially non-degraded.
Abstract:
A system and method are provided for large volume sample amplification adaptable for use with conventional PCR-based reactions as well as emulsion-based PCR reactions. A sample is retained in a pouch or flexible bag which permits bulk PCR amplification with efficient heat-transfer properties. For applications involving emulsion-based PCR amplification, the system and method provide improved uniformity in emulsion amplification and can be used to amplify large or small volume emulsions rapidly and reproducibly.
Abstract:
The present invention relates generally to nucleobase polymer functionalizing reagents, to mobility-modified sequence-specific nucleobase polymers, to compositions comprising a plurality of mobility-modified sequence-specific nucleobase polymers, and to the use of such polymers and compositions in a variety of assays, such as, for example, for the detection of a plurality of selected nucleotide sequences within one or more target nucleic acids. The mobility-modifying polymers of the present invention include phosphoramidite reagents which can be joined to other mobility-modifying monomers and to sequence-specific oligonucleobase polymers via uncharged phosphate triester linkages. Addition of the mobility-modifying phosphoramidite reagents of the present invention to oligonucleobase polymers results in unexpectedly large effects the mobility of those modified oligonucleobase polymers, especially upon capillary electrophoresis in non-sieving media.
Abstract:
A screen encore method capable of displaying again (encore) a block of pictures designated by a user or a last picture with a single key by software control, without adding hardware, so that the inventive system is highly improved both in its function and quality. The inventive system for embodying the method includes: a micom for controlling basic functions of the Video Tape Recorder (VTR) system and functions of the inventive subject; a delay device for indicating to the user the status of the VTR system under the control of the micom; a mechanism for implementing the insertion/ejection of video tapes and tape loading/unloading by the control signals coming from the micom; a video and audio signal controller for controlling video and audio signals under the control of the micom; a remote control receiver for receiving remote control signals from a remote control set to filter and amplify the signals, thereby to transmit them the micom; a sensor for sensing the present operational location of the mechanism and the status of the beginning/end of tapes to transfer the sensed data to the micom; and a keyboard, as a key input running the VTR's functions, for inputting function key and command key to the micom including an encore key.
Abstract:
Various embodiments described in the application relate to an apparatus, system, and method for generating, within a conduit, discrete volumes of one or more fluids that are immiscible with a second fluid. The discrete volumes can be used for biochemical or molecular biology procedures involving small volumes, for example, microliter-sized volumes, nanoliter-sized volumes, or smaller. The system can comprise an apparatus comprising at least one conduit operatively connected to one or more pumps for providing discrete volumes separated from one another by a fluid that is immiscible with the fluid(s) of the discrete volumes, for example, aqueous immiscible-fluid-discrete volumes separated by an oil.
Abstract:
Various embodiments of a low-volume sequencing system are provided herein. The system can include a low-volume flowcell having at least one reaction chamber of a defined volume (e.g., less than about 100 μl). The system can also include an automated reagent delivery mechanism configured to reversibly couple with the inlet port corresponding to a target reaction chamber thereby placing allowing for reagent to be accurately moved from a storage container to the reaction chamber with minimal reagent waste. The flowcells can include a plurality of reaction chambers (e.g., 6) thereby allowing for parallel analysis of multiple samples. Various methods of analyzing a biomolecule are also provided herein.