Abstract:
A light-emitting diode includes a substrate, a first conductive type semiconductor layer arranged on the substrate, a second conductive type semiconductor layer arranged on the first conductive type semiconductor layer, active layer disposed between the first conductive type semiconductor layer and the second conductive type semiconductor layer, a first electrode pad electrically connected to the first conductive type semiconductor layer, a second electrode pad electrically connected to the second conductive type semiconductor layer, and an insulation layer disposed under the second electrode pad. The insulation layer overlaps the first conductive type semiconductor layer and the second conductive type semiconductor layer. The insulation layer is flush with an edge of the first conductive type semiconductor layer and the second electrode pad is spaced apart from the edge of the first conductive type semiconductor layer.
Abstract:
A light emitting diode includes a substrate including a concave-convex pattern having concave portions and convex portions, a first light emitting unit disposed on the substrate, a second light emitting unit disposed on the substrate, a first wire connecting the first light emitting unit to the second light emitting unit over the concave-convex pattern, and an insulation layer disposed between the concave-convex pattern and the wire. The insulation layer has a shape corresponding to the concave-convex pattern.
Abstract:
A light emitting diode including a first light emitting cell and a second light emitting cell disposed on a substrate and spaced apart from each other to expose a surface of the substrate, a first transparent layer disposed on and electrically connected to the first light emitting cell, first connection section disposed on a portion of the first light emitting cell, a second connection section disposed on a portion of the second light emitting cell, a first interconnection and a second interconnection electrically connecting the first light emitting cell and the second light emitting cell, and an insulation layer disposed between the first and second interconnections and a side surface of the first light emitting cell.
Abstract:
A light emitting diode includes light emitting cells disposed on a substrate and interconnections connecting the light emitting cells to each other. Each of the light emitting cells includes a first semiconductor layer, a second semiconductor layer, an active layer disposed between the first semiconductor layer and the second semiconductor layer, and a transparent electrode layer disposed on the second semiconductor layer, wherein the first and second semiconductor layers have different conductivity types. The interconnections include a common cathode commonly connecting first and second light emitting cells of the light emitting cells, the first and second light emitting cells share the first semiconductor layer, the transparent electrode layer is continuously disposed between the first and second light emitting cells, and the common cathode is electrically connected to the first and second light emitting cells through the transparent electrode layer.
Abstract:
Exemplary embodiments of the present invention disclose a light-emitting diode (LED) including a semiconductor stack structure including a first semiconductor layer, an active layer, and a second semiconductor layer, the semiconductor stack disposed on a substrate, a conductive substrate disposed on the semiconductor stack structure, and an electrode disposed on the conductive substrate and in ohmic contact with the conductive substrate, wherein the electrode comprises grooves penetrating the electrode and a portion of the conductive substrate.
Abstract:
Provided are a light emitting diode (LED) and a method of fabricating the same. The LED includes a unit chip. The unit chip includes a substrate, and a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer which are sequentially stacked on the substrate. A concavo-convex structure having the shape of irregular vertical lines is disposed in a side surface of the unit chip.
Abstract:
A light-emitting element includes a light-emitting structure including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer interposed between the first conductive semiconductor layer and the second conductive semiconductor layer; a first contact electrode and a second contact electrode located on the light-emitting structure, and respectively making ohmic contact with the first conductive semiconductor layer and the second conductive semiconductor layer; an insulation layer for covering a part of the first contact electrode and the second contact electrode so as to insulate the first contact electrode and the second contact electrode; a first electrode pad and a second electrode pad electrically connected to each of the first contact electrode and the second contact electrode; and a radiation pad formed on the insulation layer, and radiating heat generated from the light-emitting structure.
Abstract:
A light-emitting device is provided. The light-emitting device comprises: a first body unit including a base part and at least three conductive patterns positioned on the base part while including a plurality of element loading areas; and a plurality of light-emitting elements positioned on the plurality of element loading areas of the first body unit, wherein at least one conductive pattern among the conductive patterns is electrically connected to at least two light-emitting elements, the at least two light-emitting elements are connected to each other in series, at least two conductive patterns among the conductive patterns include pad electrode areas, an area of the plurality of conductive patterns is 80% or more of an upper surface area of the base part, and a separation distance among the plurality of conductive patterns is 200 μm to 2,400 μm.
Abstract:
A light emitting diode including a first light emitting cell and a second light emitting cell separated from each other on a substrate, a first transparent electrode layer electrically connected to the first light emitting cell, an interconnection electrically connecting the first light emitting cell to the second light emitting cell, and a first insulation layer. The first transparent electrode layer is disposed on an upper surface of the first light emitting cell and partially covers a side surface of the first light emitting cell. The first insulation layer separates the first transparent electrode layer from the side surface of the first light emitting cell, and includes an opening to expose a lower semiconductor layer of the first light emitting cell.
Abstract:
A method of fabricating a light emitting diode (LED) includes: sequentially stacking a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer on a substrate; and separating the substrate into unit chips, and at the same time, forming a concavo-convex structure having the shape of irregular vertical lines in a side surface of the unit chip.