摘要:
To efficiently select and proliferate the mesenchymal stem cells without necessity of an exclusive separating device and a complicated separating operation, mesenchymal stem cells are cultured by seeding at least one of a bone marrow solution, an umbilical cord blood, a peripheral blood, a synovial membrane and an amniotic membrane in a liquid culture medium which is filled in a vessel, includes water as its main components and having a specific gravity between 1.06 and 1.10 g/ml at 37° C., and making a culture at a temperature 37±2° C. on a ceiling side surface of the vessel, preferably the specific gravity being regulated by use of at least one selected from silica fine powder coated by polyvinyl pyrrolidone, a water soluble copolymer of sucrose and epichlorohydrin, and a water soluble compound including a triiodo aromatic ring.
摘要:
Disclosed are: a culture medium containing a specific growth factor and at least one phospholipid; a composition for preparation of the culture medium; a kit; and a method. A technique can be provided which uses a serum-free or low-serum culture medium and has a promoting effect on the proliferation of an animal cell comparable to the promoting effect obtained by the culture in a serum-containing culture medium.
摘要:
The present invention provides an immunodeficient mouse (NOG mouse) suitable for engraftment, differentiation and proliferation of heterologous cells, and a method of producing such a mouse. This mouse is obtained by backcrossing a C.B-17-scid mouse with an NOD/Shi mouse, and further backcrossing an interleukin 2-receptor γ-chain gene-knockout mouse with the thus backcrossed mouse. It is usable for producing a human antibody and establishing a stem cell assay system, a tumor model and a virus-infection model.
摘要:
A cell preparation containing mesenchymal stem cells whose immunosuppression ability is maintained is produced by means of a serum-free or low-serum culture. A method for producing a cell preparation containing mesenchymal stem cells, comprising the steps of: (A) proliferating mesenchymal stem cells in a serum-free medium “A” containing an FGF, a PDGF, a TGF-β, an HGF, an EGF, at least one phospholipid, and at least one fatty acid; and (B) screening mesenchymal stem cells whose immunosuppression ability is maintained or improved, from the mesenchymal stem cells thus proliferated in the step (A).
摘要:
Disclosed are: a culture medium containing a specific growth factor and at least one phospholipid; a composition for preparation of the culture medium; a kit; and a method. A technique can be provided which uses a serum-free or low-serum culture medium and has a promoting effect on the proliferation of an animal cell comparable to the promoting effect obtained by the culture in a serum-containing culture medium.
摘要:
This invention provides therapeutic agents, transplants and therapeutic methods that can enhance the regeneration of injured tissue. This invention relates to agents, transplants and therapeutic methods for enhancing the migration and accumulation of mesenchymal stem cells in injured tissues and/or suppressing the diffusion of mesenchymal stem cells from injured tissues.
摘要:
To provide a sheet for guiding regeneration of mesenchymal tissue having improved formability, strength, absorbability and efficiency, the sheet is produced by steps of containing a culture medium in a surface of a porous sheet produced by freezing a bioabsorbable polymer material dissolved with an organic solvent and drying it, seeding a mesenchymal cell grown after taking from biotissue, and differentiating the mesenchymal cell to a mesenchymal tissue precursor cell, where the mesenchymal tissue precursor cell and an extracellular substrate are adhered on the surface of the porous sheet containing a culture medium, and the extracellular substrate is secreted in a process of the mesenchymal cell being differentiated to the mesenchymal tissue precursor cell.
摘要:
To provide a sheet for guiding regeneration of mesenchymal tissue having improved formability, strength, absorbability and efficiency, the sheet is produced by steps of containing a culture medium in a surface of a porous sheet produced by freezing a bioabsorbable polymer material dissolved with an organic solvent and drying it, seeding a mesenchymal cell grown after taking from biotissue, and differentiating the mesenchymal cell to a mesenchymal tissue precursor cell, where the mesenchymal tissue precursor cell and an extracellular substrate are adhered on the surface of the porous sheet containing a culture medium, and the extracellular substrate is secreted in a process of the mesenchymal cell being differentiated to the mesenchymal tissue precursor cell.
摘要:
The present invention provides a marker for detecting, separating/distinguishing a mesenchymal stem cell and a method for detecting, separating/distinguishing a mesenchymal stem cell by using the marker. A gene shown in the sequence listing is expressed specifically in a mesenchymal stem cell. The present invention comprises use of the gene as a marker for detecting mesenchymal stem cells. In addition, the present invention comprises a probe for detecting the mesenchymal stem cell marker gene and a PCR primer for amplifying the gene in a test cell in detecting the mesenchymal stem cell gene marker, and further comprises a polypeptide marker for detecting mesenchymal stem cells comprising a polypeptide wherein the mesenchymal stem cell marker gene of the present invention is expressed, an antibody for detecting the polypeptide marker which specifically binds to the polypeptide marker, and still further, a method for distinguishing and separating a mesenchymal stem cell by using a probe for detecting the mesenchymal stem cell marker gene, and an antibody which specifically binds to a polypeptide marker.
摘要:
Through holes are formed at four peripheral edges of a plurality of semiconductor chip placement regions of an insulating substrate, except for coupling portions partially arranged thereat. A substrate sheet for semiconductor module is used in which connecting portions between inner lead portions and outer lead portions arranged on both surfaces of the substrate are formed in pattern on the side wall surface of the through hole. The semiconductor chip is mounted on each region, electrode terminals thereof and the inner lead portions are electrically connected to each other, the chip is sealed, and then the coupling portions are cut.