Abstract:
The present invention relates to a cyanate resin composition, and a prepreg, a laminate, a metal foil clad laminate and a printed circuit board prepared by using same. The cyanate resin composition comprises a cyanate resin (A), an epoxy resin (B) with a structure of formula (I) and a maleimide compound (C). The cyanate resin composition of the present invention, and the prepreg, the laminate and the metal foil clad laminate prepared by using the cyanate resin composition have good moisture resistance, heat resistance, flame retardancy and reliability, and are suitable for being used as a substrate material for manufacturing a high-density printed circuit board.
Abstract:
The present invention relates to a flame retardant resin composition having excellent flame retardancy and improved thermal deformation properties, and a flame retardant resin molded article manufactured therefrom, and provides a flame retardant resin composition including a) a base resin including a polyarylene ether-based polymer; an aromatic vinyl-based polymer and a copolymer of vinylcyan monomer-conjugated diene monomer-aromatic vinyl monomer; b) an organophosphorus-based flame retardant; c) a hypophosphite compound; and d) a sulfur-containing compound including at least two sulfur atoms, wherein b) the organophosphorus-based flame retardant, c) the hypophosphite compound and d) the sulfur-containing compound are included in a weight ratio of 15 to 24:2 to 4:2 to 5.
Abstract:
The present invention pertains to a fluorine-free composition for treating textile articles being water repellant, sol resistant and stain resistant, especially carpets comprising a first composition comprising an aqueous silicone emulsion, an aqueous dispersion of a silane quaternary ammonium salt and water and a second composition comprising a soil repellency component that is an aqueous dispersion of colloidal organosiloxane copolymers.
Abstract:
The technology discloses a halogen-free resin composition and a prepreg and a laminate used for a printed circuit. The resin composition comprises: alkyl phenol epoxy resin; benzoxazine resin, alkyl phenol novolac curing agent, and phosphorus-containing flame retardant. The alkyl phenol epoxy resin has many alkyl branched chains in its molecular structure, making the composition have excellent dielectric properties, a higher glass transition temperature, low water absorption, and good heat resistance. Mixing benzoxazine resin into the composition can further reduce dielectric constant, dielectric loss value and water absorption of the cured product. With an alkyl phenol novolac curing agent, the molecular structure will have many alkyls, excellent dielectric properties and low water absorption. A prepreg and a laminate used for printed circuit prepared using the resin composition have low dielectric constants, dielectric loss factors, and water absorption, high dimensional stability, high thermal resistance and good flame retardancy, processability and chemical resistance.
Abstract:
The present invention relates to a halogen-free epoxy resin composition, a prepreg, a laminate and a printed circuit board containing the same. The halogen-free epoxy resin composition comprises an epoxy resin and a curing agent. Taking the total equivalent amount of the epoxy groups in the epoxy resin as 1, the active groups in the curing agent which react with the epoxy groups have an equivalent amount of 0.5-0.95. By controlling the equivalent ratio of the epoxy groups in the epoxy resin to the active groups in the curing agent to be 0.5-0.95, the present invention ensures the Df value stability of prepregs under different curing temperature conditions while maintaining a low dielectric constant and a low dielectric loss. The prepregs and laminates prepared from the resin composition have comprehensive performances, such as low dielectric constant, low dielectric loss, excellent flame retardancy, heat resistance, cohesiveness, low water absorption and moisture resistance, and are suitable for use in halogen-free multilayer circuit boards.
Abstract:
The present invention relates to a halogen-free resin composition and a prepreg and a laminated board prepared therefrom. The halogen-free resin composition contains the following components in parts by weight: 50-100 parts of an epoxy resin; 20-70 parts of benzoxazine; 5-40 parts of a polyphenyl ether; 5-40 parts of allyl benzene-maleic anhydride; 10-60 parts of a halogen-free flame retardant; 0.2-5 parts of a curing accelerator, and 20-100 parts of a filler. The prepreg and laminated board prepared from the halogen-free resin composition have comprehensive performances such as a low dielectric constant, a low dielectric loss, an excellent flame retardance, heat resistance, cohesiveness and moisture resistance, etc., and are suitable for use in a halogen-free high multilayer circuit board.
Abstract:
This disclosure relates to halogen-free flame retardant polycarbonate/thermoplastic polyester molding compositions with improved mechanical properties and increased polyester loading level. More particularly, the disclosure relates to halogen-free polycarbonate/thermoplastic polyester resin alloys with polymeric phosphorus flame retardant additive and siloxane impact modifier. Also included are methods for preparing such compositions and articles there from.
Abstract:
The technology discloses a halogen-free resin composition and a prepreg and a laminate used for a printed circuit. The resin composition comprises: alkyl phenol epoxy resin; benzoxazine resin, alkyl phenol novolac curing agent, and phosphorus-containing flame retardant. The alkyl phenol epoxy resin has many alkyl branched chains in its molecular structure, making the composition have excellent dielectric properties, a higher glass transition temperature, low water absorption, and good heat resistance. Mixing benzoxazine resin into the composition can further reduce dielectric constant, dielectric loss value and water absorption of the cured product. With an alkyl phenol novolac curing agent, the molecular structure will have many alkyls, excellent dielectric properties and low water absorption. A prepreg and a laminate used for printed circuit prepared using the resin composition have low dielectric constants, dielectric loss factors, and water absorption, high dimensional stability, high thermal resistance and good flame retardancy, processability and chemical resistance.
Abstract:
An electric wire and cable made of a non-halogen flame retardant resin composition has a modified polyolefin resin composition comprising a polyolefin resin grafted with a phosphate compound having a vinyl group, and an acid acceptor doped to the modified polyolefin resin.
Abstract:
An electrical connector having a housing formed of a non-halogenated flame retardant polymer composition is described. The non-halogenated flame retardant polymer composition is formulated to meet flammability performance requirements while maintaining a balance of flexibility and stiffness to allow for the connector to operate properly.