Abstract:
The present invention relates to an electronic device incorporating a heat distributor. It applies more particularly to devices of the plastic package type, with one or more levels of components. According to the invention, the electronic device, for example of the package type, is provided for its external connection with pads distributed over a connection surface. It includes a thermally conducting plate lying parallel to said connection surface and having a nonuniform structure making it possible, when the device is exposed to a given external temperature, to supply a controlled amount of heat to each external connection pad according to its position on the connection surface. If the device is a package comprising a support of the printed circuit type, the conducting plate will advantageously form an internal layer of said support.
Abstract:
An interposer including at least two dielectric layers bonded to each other, sandwiching a plurality of conductors there-between. The conductors each electrically couple a respective pair of opposed electrical contacts formed within and protruding from openings with the dielectric layers.
Abstract:
An exemplary printed circuit board (200) has a substrate (210); a circuit (230) on the substrate; and a plurality of pins (220) peripherally located on the substrate, electrically connected to the circuit. The printed circuit board further has a plurality of accommodating spaces (223) formed at the plurality of pins.
Abstract:
Methods of forming a conductive structure on a substrate prior to packaging, and a test probe structure generated according to the method, are disclosed. The conductive structure includes a high aspect ratio structure formed by injected molded solder. The invention can be applied to form passive elements and interconnects on a conventional semiconductor substrate after the typical BEOL, and prior to packaging. The method may provide better electromigration characteristics, lower resistivity, and higher Q factors for conductive structures. In addition, the method is backwardly compatible and customizable.
Abstract:
A connector device includes a plug including a plurality of plug terminals and a socket including a plurality of socket terminals. Ground plug terminals each have a recess on the contact surface, and ground socket terminals each have a dimple on the contact surface thereof. The dimple of the ground socket terminal is elastically urged to the recess of the ground plug terminal for obtaining a firm electric contact between the ground plug terminal and the ground socket terminal.
Abstract:
Embodiments include interconnect of electrically conductive material with a contact surface, and a dielectric layer overlying the contact surface with a trench and via in the dielectric layer, the via extending to the contact surface. An interlock material is in the via with an interlock opening extending through the interlock material and into the interconnect. A layer of electroless material is on the base of the trench and the surfaces of the via, interlock material, and interlock opening. An subsequent interconnect is formed on the electroless material, in the trench, via, and interlock openings. The structure can be repeated to form a stack or column of interconnects that resist delamination.
Abstract:
A cable connector includes a contact assembly including an electrical insulating block part which is configured to incorporate plural signal contacts; and a relay wiring substrate mounted to a back of the contact assembly. The relay wiring substrate includes, on a surface, a contact connecting pad electrically connected to one of the signal contacts, a wiring connecting pad, and a wiring pattern connecting the contact connecting pad and the wiring connecting pad. The relay wiring substrate further includes a ground layer inside the relay wiring substrate. The cable connector further includes a cable connected to the relay wiring substrate by electrically connecting an end of a wiring with the wiring connecting pad. The relay wiring substrate further includes a ground pattern for matching impedance inside the relay wiring substrate.
Abstract:
An embodiment of a printed circuit board according to the present invention is provided with an insulating layer, a conductive layer that is laminated on the insulating layer and that has a connecting portion and a circuit pattern portion formed connected to the connecting portion, and a film cover layer that covers the insulating layer and the conductive layer via an adhesive layer and that has an opening for connecting a mounted component to the connecting portion. The circuit pattern portion is provided with a recessed portion that is concave with respect to the connecting portion.
Abstract:
A board structure, a ball grid array (BGA) package and method thereof and a solder ball and method thereof. The example solder ball may include a solder portion and a grooved connection portion, formed through a partitioning process, configured to fit a corresponding protruding portion on a board. The example BGA package may include a plurality of the example solder balls. The example board structure may include the example BGA package connected to the board via the grooved connection portions and the protruding portions.
Abstract:
A circuit board comprises a substrate, a plurality of circuit islands, and a plurality of trenches. The circuit islands are formed on the substrate configured for mounting heat-generating devices thereon. The trenches are defined in the substrate configured for increasing a heat dissipation surface area of the substrate. Each of the trenches is arranged between each pair of adjacent circuit islands. A light source device comprises the above circuit board and a plurality of light-emitting diodes is mounted on the circuit island of the circuit board.