Abstract:
The present disclosure provides methods and compositions for detecting polynucleotides in a sample and for quantifying polynucleotide load in a sample. The polynucleotides can be associated with a disease, disorder, or condition. In some applications, methylated DNA is quantified, e.g., in order to determine the load of polynucleotides in a sample. The present disclosure also provides methods and compositions for determining the load of fetal polynucleotides in a biological sample, e.g., the load of fetal polynucleotides (e.g., DNA, RNA) in maternal plasma. The present disclosure provides methods and compositions for detecting cellular processes such as cellular viability, growth rates, and infection rates. This disclosure also provides compositions and methods for detecting differences in copy number of a target polynucleotide. In some embodiments, the methods and compositions provided herein are useful for diagnosis of fetal genetic abnormalities, when the starting sample is maternal tissue (e.g., blood, plasma). The methods and materials described apply techniques for allowing detection of small, but statistically significant, differences in polynucleotide copy number.
Abstract:
A system, including method and apparatus, for generating droplets suitable for droplet-based assays. The disclosed systems may include either one-piece or multi-piece droplet generation components configured to form sample-containing droplets by merging aqueous, sample-containing fluid with a background emulsion fluid such as oil, to form an emulsion of sample-containing droplets suspended in the background fluid. In some cases, the disclosed systems may include channels or other suitable mechanisms configured to transport the sample-containing droplets to an outlet region, so that subsequent assay steps may be performed.
Abstract:
Devices and methods for generating droplets. An exemplary device comprises a substantially planar base portion including a bottom surface having a plurality of microfluidic channels formed therein as recessed regions of the bottom surface. The device also comprises a plurality of protrusions projecting from a top surface of the base portion and each formed integrally with the base portion. The device further comprises a sample well, a carrier well, and a droplet well. Each well has an upper portion created by one of the protrusions. A cover layer is attached to the bottom surface of the base portion and seals a bottom side of each microfluidic channel.
Abstract:
Methods of generating droplets. In an exemplary method, a device including a sample well, a carrier well, a droplet well, and a plurality of microfluidic channels is selected. The microfluidic channels include a first channel, a second channel, and a third channel. A discrete volume of sample-containing fluid is placed into the sample well, and a discrete volume of carrier fluid is placed into the carrier well. A pressure differential is created after placing the discrete volumes, to cause fluid flow. Sample-containing fluid flows from the sample well to a droplet-generation region of the device via the first channel. Carrier fluid flows from the carrier well to the droplet-generation region via the second channel. Sample-containing droplets and carrier fluid flow from the droplet-generation region to the droplet well via the third channel.
Abstract:
Methods of generating droplets. In an exemplary method, a device including a sample well, a carrier well, a droplet well, and a plurality of microfluidic channels is selected. The microfluidic channels include a first channel, a second channel, and a third channel. A discrete volume of sample-containing fluid is placed into the sample well, and a discrete volume of carrier fluid is placed into the carrier well. A pressure differential is created after placing the discrete volumes, to cause fluid flow. Sample-containing fluid flows from the sample well to a droplet-generation region of the device via the first channel. Carrier fluid flows from the carrier well to the droplet-generation region via the second channel. Sample-containing droplets and carrier fluid flow from the droplet-generation region to the droplet well via the third channel.
Abstract:
System, including methods and apparatus, for performing droplet-based assays that are controlled and/or calibrated using signals detected from droplets.
Abstract:
Methods of partition-based analysis. In an exemplary method, a device having a port fluidically connected to a chamber may be selected. A sample-containing fluid may be placed into the port. The sample-containing fluid may be moved from the port to the chamber. Partitions of the sample-containing fluid may be formed. A monolayer of the partitions in the chamber may be created. At least a portion of the monolayer may be imaged.
Abstract:
Method of analysis. In the method, a first emulsion and a second emulsion substantially separated from one another by a spacer fluid may be formed. The first emulsion, the spacer fluid, and the second emulsion may be flowed in a channel from a fluid inlet to a fluid outlet of a heating and cooling station having two or more temperature-controlled zones, such that each emulsion is thermally cycled to promote amplification of a nucleic acid target in droplets of the emulsion. Amplification data may be collected from individual droplets of each emulsion downstream of the heating and cooling station. A level of the nucleic acid target present in each emulsion may be determined based on the amplification data collected from the individual droplets of the emulsion.
Abstract:
Method of performing a droplet-based assay. The method may include obtaining droplets encapsulated by an immiscible liquid and packed closely together in a monolayer, performing a reaction in the droplets while packed closely together in the monolayer; and collecting data related to an analyte from a plurality of the droplets while the droplets remain closely packed together in the monolayer.