Abstract:
Embodiments herein describe apparatuses, systems, and methods for signaling to support downlink coordinated multipoint (CoMP) communications with a user equipment (UE) in a wireless communication network. In embodiments, the UE may be configured with a plurality of channel state information (CSI) processes (e.g., via radio resource control (RRC) signaling) to use for providing CSI feedback to an evolved Node B (eNB) to support downlink CoMP communications. The UE may be configured with a plurality of sets of CSI processes. The UE may further receive a downlink control information (DCI) message from the eNB that indicates one of the configured sets of CSI processes on which the UE is to provide CSI feedback to the UE. The UE may generate the CSI feedback for the indicated set of CSI processes, and transmit the CSI feedback to the eNB in a CSI report.
Abstract:
Embodiments of a system and method for reporting uplink control information (UCI) are generally described herein. In some embodiments, a first and second component carrier (CC) is provided for a user equipment (UE). The first and second CC are configured with transmission mode (TM) 10 and TMs 1-9, respectively. A first channel state information (CSI) report for the first CC with TM 10 and a second CSI report for the second CC with at least one of TMs 1-9 are scheduled for transmission in a subframe. A collision is detected between the first and second CSI reports. Priority is assigned to the first CSI report or the second CSI report based on a prioritization parameter. The prioritized CSI report is transmitted based the prioritization parameter.
Abstract:
The techniques introduced herein provide a framework for efficient communication to, and among, a local communication group (LCG). The LCG may be a peer-to-group communication or a network-to-group communication. The peer-to-group communication may be one way (e.g., one peer in the group may send communications to the rest of the users with little feedback) or two way (e.g., each member of the group may have the ability to share content with the remaining members of the group). According to the techniques introduced herein, local group communication may be anchored through an eNodeB of an LTE network, which may use a combination of multicast communications in the downlink and unicast communications in the uplink.
Abstract:
Methods, apparatuses, and systems are described related to interference averaging to generate feedback information and interference averaging to demodulate receives signals. In embodiments, an evolved Node B (eNB) may transmit interference averaging information to a user equipment (UE) including a time domain averaging indicator indicating a time domain averaging window to be used by the UE for averaging interference measurements in a time domain or a frequency domain averaging indicator to indicate a frequency domain averaging window to be used by the UE for averaging interference measurements in a frequency domain. Additionally, or alternatively, the eNB may transmit an interference resource group (IRG) indicator to the UE to indicate an IRG over which the UE is to perform interference averaging to facilitate demodulation of signals received by the UE from the eNB.
Abstract:
Briefly, in accordance with one or more embodiments, user equipment receives unicast services from a first carrier of a primary serving cell and determines if Multimedia Broadcast and Multicast services (MBMS) services are available on a second carrier based at least in part on information in a broadcast carrier channel that indicates the second carrier or an identification (ID) of the second carrier. If MBMS services are available on the second carrier, the user equipment at least temporarily switches to the second carrier to receive the MBMS services. The user equipment may provide feedback to the network or the primary serving cell when it starts and stops receiving MBMS services, and then may switch back to the primary serving cell when MBMS services have ended or the user equipment no longer desires to receive MBMS services.
Abstract:
Technology for performing multiple timing advances in a carrier aggregation communication system is disclosed. A method comprises communicating a random access preamble from a UE to an eNodeB via a PCell associated with a selected component carrier of the carrier aggregation. A Random Access Response (RAR) is received at the UE from the eNodeB for the PCell. The RAR contains a timing advance adjustment instructing the UE to adjust a timing of a PCell wireless communication. A request is received at the UE to adjust a timing of an SCell communication. A random access preamble is communicated to the UE via the SCell. An RAR is received at the UE from the eNodeB for the SCell to adjust a timing advance of the SCell wireless communication.
Abstract:
Technology for an eNodeB operable to maintain timing advance groups (TAGs) is disclosed. The eNodeB can form a timing advance group (TAG) for one or more serving cells. The eNodeB can map each of the one or more serving cells to the TAG using signaling from the eNodeB. The eNodeB can assign a timing advance group identifier (TAG ID) to the one or more serving cells mapped to the TAG.
Abstract:
An eNodeB operable to maintain timing advance groups (TAGs) in a heterogeneous network (HetNet) is disclosed. The eNodeB can form a timing advance group (TAG) for one or more serving cells when a same timing advance applies to the one or more serving cells. The eNodeB can map each of the one or more serving cells to the TAG using radio resource control (RRC) signaling from the eNodeB. The eNodeB can assign a timing advance group identifier (TAG ID) to the one or more serving cells mapped to the TAG. A separate timing advance timer can be maintained at a user equipment (UE) for each TAG for a selected period of time.
Abstract:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for management and/or support of multimedia broadcast multicast service (MBMS) service in a wireless communications network. An evolved Node B (eNB) may transmit MBMS assistance information to a user equipment (UE). The MBMS assistance information may identify a carrier by which one or more upcoming MBMS services are to be provided and an indicator of a carrier selection mode to be used by the UE. The UE may transmit an MBMS interest indication message including information related to one or more targeted MBMS services which the UE wants to receive.
Abstract:
Briefly, in accordance with one or more embodiments, user equipment receives unicast services from a first carrier of a primary serving cell and determines if Multimedia Broadcast and Multicast services (MBMS) services are available on a second carrier based at least in part on information in a broadcast carrier channel that indicates the second carrier or an identification (ID) of the second carrier. If MBMS services are available on the second carrier, the user equipment at least temporarily switches to the second carrier to receive the MBMS services. The user equipment may provide feedback to the network or the primary serving cell when it starts and stops receiving MBMS services, and then may switch back to the primary serving cell when MBMS services have ended or the user equipment no longer desires to receive MBMS services.