摘要:
A field emission source produces a charged particle beam that can be electrostatically aligned with the optical axis. Quadrupole (or higher multipole) centering electrodes approximately centered on the optical axis are placed between the emitter and the extraction electrode. By applying centering potentials of equal amplitude and opposite polarity on opposing elements of the centering electrodes, an electrostatic deflection field is created near the optical axis. The electrostatic deflection field aligns the charged particle beam with the optical axis thereby obviating the need to mechanically align the emitter with the optical axis. A second set of centering electrodes may be used to deflect the charged particle beam back and to ensure that the charged particle beam is parallel with the optical axis. Further, the extraction electrode may be split into a quadrupole arrangement with the extraction and centering potentials superimposed.
摘要:
One embodiment relates to apparatus for correcting aberrations introduced when an electron lens images a specimen. A specimen is illuminated, and a cathode objective lens accelerates emitted or scattered electrons. The resulting electron beam is deflected by a magnetic beam separator that disperses the incoming electron beam according to its energy. The dispersed beam is focused at the reflection plane of an electron mirror. After this focusing, and a second deflection by the beam separator, the beam dispersion is removed. The dispersion-free beam is reflected in a second electron mirror which corrects aberrations of the cathode objective lens. The beam separator then deflects the beam towards projection optics which form a magnified, aberration-corrected image. When energy filtering is needed, a knife-edge plate is inserted between the beam separator and first electron mirror to remove electrons outside the selected range. Other embodiments are disclosed.
摘要:
One embodiment pertains to an apparatus for compressing an electron pulse. An electron source is illuminated by a pulsed laser and generates a pulse of electrons. The pulse enters a beam separator which deflects the electrons by 90 degrees into an electron mirror. The faster, higher energy electrons form the leading edge of the pulse and penetrate more deeply into the retarding field of the electron mirror than the lower energy electrons. After reflection, the lower energy electrons exit the electron mirror before the higher energy electrons and form the leading edge of the pulse. The reflected pulse reenters the separator and is deflected by 90 degrees towards the specimen. The fast, higher energy electrons catch up with the slow, low energy electrons as the electrons strike the specimen. The electrons are scattered by the specimen and used to form a two-dimensional image or diffraction pattern of the specimen.
摘要:
In one embodiment, a first vacuum chamber of an electron beam column has an opening which is positioned along an optical axis so as to pass a primary electron beam that travels down the column. A source that emits electrons is positioned within the first vacuum chamber. A beam-limiting aperture is configured to pass a limited angular range of the emitted electrons. A magnetic immersion lens is positioned outside of the first vacuum chamber and is configured to immerse the electron source in a magnetic field so as to focus the emitted electrons into the primary electron beam. An objective lens is configured to focus the primary electron beam onto a beam spot on a substrate surface so as to produce scattered electrons from the beam spot. Controllable deflectors are configured to scan the beam spot over an area of the substrate surface. Other features and embodiments are also disclosed.
摘要:
A method of forming a gate valve for use in a high vacuum environment of an electron gun by machining a core of non-magnetic nickel-chromium-molybdenum-iron-tungsten-silicon-carbon alloy that is weldable with nickel alloys and has a tensile strength of about 750 megapascals, machining a cladding of nickel-iron, welding the core to the cladding to form the gate valve, and machining the gate valve so as to remove any dimensional differences at an interface between the core and the cladding. In this manner, because the final mechanical tolerance is controlled by machining instead of part assembling, extremely high alignment accuracy is obtained. The final part provides field shielding as provided by the nickel alloy shell, low stray field provided by the non-magnetic alloy, good vacuum performance, and tight mechanical tolerance control. Also, because the alloy has the advantage of a low oxidation rate in comparison to stainless steel and titanium, there is less contamination buildup due to conditions such as electron beam bombardment.
摘要:
One embodiment relates to a scanning electron beam apparatus having curved electron-optical axes. An electron gun and illumination electron optics are configured to generate a primary electron beam along a first axis. Objective electron optics is configured about a second axis to receive the primary electron beam, to focus the incident electron beam onto the substrate, and to retrieve an emitted beam of scattered electrons from the substrate. Detection electron optics is configured about a third axis to receive the emitted beam and to focus the emitted beam onto a detector. A beam separator is coupled to and interconnecting the illumination electron optics, the objective electron optics, and the detection electron optics in such a way that there is a same angle between the first and second axes as between the second and third axes. A beam deflector is configured to controllably scan the primary electron beam across the substrate and to de-scan the emitted electron beam. Other embodiments are also disclosed.
摘要:
One embodiment disclosed relates to a method for inspecting or reviewing a magnetized specimen using an automated inspection apparatus. The method includes generating a beam of incident electrons using an electron source, biasing the specimen with respect to the electron source such that the incident electrons decelerate as a surface of the specimen is approached, and illuminating a portion of the specimen at a tilt with the beam of incident electrons. The specimen is moved under the incident beam of electrons using a movable stage of the inspection apparatus. Scattered electrons are detected to form image data of the specimen showing distinct contrast between regions of different magnetization. The movement of the specimen under the beam of incident electrons may be continuous, and data for multiple image pixels may be acquired in parallel using a time delay integrating detector.
摘要:
An electron beam lithography system includes a laser for generating a laser beam, and a beam splitter for splitting the laser beam into a plurality of light beams. The intensity of the light beams is individually modulated. The light beams are of sufficient energy such that, when they impinge on a photocathode, electrons are emitted. Modulation of the light beams controls modulation of the resulting electron beams. The electron beams are provided to an electron column for focusing and scanning control. Finally, the electron beams are used to write a scanning surface, for example, using an interlaced writing strategy.
摘要:
A photocathode having a gate electrode so that modulation of the resulting electron beam is accomplished independently of the laser beam. The photocathode includes a transparent substrate, a photoemitter, and an electrically separate gate electrode surrounding an emission region of the photoemitter. The electron beam emission from the emission region is modulated by voltages supplied to the gate electrode. In addition, the gate electrode may have multiple segments that are capable of shaping the electron beam in response to voltages supplied individually to each of the multiple segments.
摘要:
One embodiment relates to an apparatus for correcting aberrations introduced when an electron lens forms an image of a specimen and simultaneously forming an electron image using electrons with a narrow range of electron energies from an electron beam with a wide range of energies. A first electron beam source is configured to generate a lower energy electron beam, and a second electron beam source is configured to generate a higher energy electron beam. The higher energy beam is passed through a monochromator comprising an energy-dispersive beam separator, an electron mirror and a knife-edge plate that removes both the high and low energy tail from the propagating beam. Both the lower and higher energy electron beams are deflected by an energy-dispersive beam separator towards the specimen and form overlapping illuminating electron beams. An objective lens accelerates the electrons emitted or scattered by the sample. The electron beam leaving the specimen is deflected towards a first electron mirror by an energy-dispersive beam separator, which introduces an angular dispersion that disperses the electron beam according to its energy. A knife-edge plate, located between the beam separator and first electron mirror, is inserted that removes all of the beam with energy larger and smaller than a selected energy and filters the beam according to energy. One or more electron lenses focus the electron beam at the reflection surface of the first electron mirror so that after the reflection and another deflection by the same energy-dispersive beam separator the electron beam dispersion is removed. The dispersion-free and energy-filtered electron beam is then reflected in a second electron mirror which corrects one or more aberrations of the objective lens. After the second reflection, electrons are deflected by the magnetic beam separator towards the projection optics which forms a magnified, aberration-corrected, energy-filtered image on a viewing screen.