Abstract:
The present invention provides tunable waste conversion systems and apparatus which have the advantage of highly robust operation and which provide complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The systems provide the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced use or without further use of the gases generated by the conversion process. The apparatus may be employed as a net energy or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production. Methods and apparatus for converting metals, non-glass forming waste streams and low-ash producing inorganics into a useful gas are also provided. The methods and apparatus for such conversion include the use of a molten oxide pool having predetermined electrical, thermal and physical characteristics capable of maintaining optimal joule heating and glass forming properties during the conversion process.
Abstract:
The present invention provides tunable waste conversion systems and apparatus which have the advantage of highly robust operation and which provide complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The systems provide the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced use or without further use of the gases generated by the conversion process. The apparatus may be employed as a net energy or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production. Methods and apparatus for converting metals, non-glass forming waste streams and low-ash producing inorganics into a useful gas are also provided. The methods and apparatus for such conversion include the use of a molten oxide pool having predetermined electrical, thermal and physical characteristics capable of maintaining optimal joule heating and glass forming properties during the conversion process.
Abstract:
The present invention provides a relatively compact and highly robust waste-to-energy conversion system and apparatus which has the advantage of complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The gas may be utilized in a combustion process to generate electricity and the solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In one embodiment of the invention, the conversion system includes an arc plasma furnace directly coupled to a joule heated melter. In an alternative and preferred embodiment of the invention, the arc plasma furnace and joule heated melter are formed as a completely integrated unit having circuit arrangements for the simultaneous operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The apparatus may additionally be employed without further use of the gases generated by the conversion process.
Abstract:
A method of destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500.degree. C. to heat the particulate material to a temperature in the range of from about 200.degree. C. to about 900.degree. C. in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet.
Abstract:
The invention relates to apparatus for processing waste, in particular hospital waste, the apparatus including a gasification chamber (1) into which the waste is inserted to be subjected to degassing and to combustion, a post-combustion chamber (2) for the gases coming from the gasification chamber, and a melting chamber (3) in which the slag coming from the gasification chamber (1) is exposed to high temperature for vitrification purposes.
Abstract:
A method and apparatus for gasifying organic materials in a gasification reactor and vitrifying residual ash in a melting furnace comprising introducing a charge containing organic materials into said reactor, heating the charge sufficiently to thermally decompose and gasify the organic materials resulting in evolved gases, by means of at least one high temperature burner gas stream by combustion of a fuel with an oxygen-containing gas, to produce said synthesis gas and residual ash, introducing said residual ash from said reactor into a separate melting furnace, vitrifying said residual ash in said melting furnace by combustion of a fuel with an oxygen-containing gas, removing said vitrified ash as a solid frit product, and introducing the combustion gas from said furnace into said reactor.
Abstract:
An incinerator for carrying out incineration of general or specific waste dry distillation, which can improve wastes incineration efficiency and prevent secondary pollution, such as a gas smell, by performing complete combustion by facilitating feeding of waste and discharging of ash under a condition that the furnace maintained sealed like for a conventional dry distillation incineration furnace. The incinerator is provided to feed waste introduced into a waste placing tube to a dry distillation incineration furnace by repeatedly pressing the waste, to discharge ash heaped on the bottom of the dry distillation incineration furnace by dropping into an ash placing tube with a discharge blade and pressing the dropped ash with a pressing plate, and to incinerate specific waste with high moist contents and waste wire using an indirect dry distillation tank accommodated in a combustion tank. The incinerator is also provided to facilitate complete combustion by multiple combustion of the distilled gas for preventing secondary pollution.
Abstract:
Pulverent solid sorption agent is injected into and, optionally, admixed with a stream of noxious-contaminant-containing gas and then separated from such gas. The solid sorption agent comprises an alkali-metal and/or alkaline-earth-metal compound and advantageously contains iron-III-oxide; such agent is preferably in the form of dust developed during production of iron or steel.
Abstract:
A pyrolysis waste-to-energy conversion system has a muffle furnace housing a rotating retort drum within the furnace and having an inlet sleeve and an outlet sleeve extending through inlet and outlet ends of the muffle furnace. A rotating retort drum drive applies rotary drive to the inlet rotating retort drum sleeves and an in-feed auger is within a tube within the inlet sleeve. An out-feed auger is within a tube within the outlet sleeve and arranged to deliver char and pyrolysis syngas to a char processing system and a syngas processing system. The inlet sleeve and said outlet sleeve are arranged to provide a gas seal to prevent air ingress or syngas egress to and from the rotating retort drum. A gas cleaning system has a cracking tower arranged to retain inlet gas at an elevated temperature for a residence time, and a gas quench and scrubber system.
Abstract:
A method and apparatus for treating waste material having organic components and radioactive agents. The method including the steps of gasifying the waste material at temperature between 600-950° C. in a reactor to form a gaseous material. The gaseous material is cooled to a temperature between 300-500° C., after the cooling the solid fraction including the radioactive agents are removed.