摘要:
A charged particle beam system for imaging and processing targets is disclosed, comprising a charged particle column, a secondary particle detector, and a secondary particle detection grid assembly between the target and detector. In one embodiment, the grid assembly comprises a multiplicity of grids, each with a separate bias voltage, wherein the electric field between the target and the grids may be adjusted using the grid voltages to optimize the spatial distribution of secondary particles reaching the detector. Since detector lifetime is determined by the total dose accumulated at the area on the detector receiving the largest dose, detector lifetime can be increased by making the dose into the detector more spatially uniform. A single resistive grid assembly with a radial voltage gradient may replace the separate grids. A multiplicity of deflector electrodes may be located between the target and grid to enhance shaping of the electric field.
摘要:
A charged particle buncher includes a series of spaced apart electrodes arranged to generate a shaped electric field. The series includes a first electrode, a last electrode and one- or more intermediate electrodes. The charged particle buncher includes a waveform device attached to the electrodes and configured to apply a periodic potential waveform to each electrode independently in a manner so as to form a quasi-electrostatic time varying potential gradient between adjacent electrodes and to cause spatial distribution of charged particles that form a plurality of nodes and antinodes. The nodes have a charged particle density and the antinodes have substantially no charged particle density, and the nodes and the antinodes are formed from a charged particle beam configured to hit the target.
摘要:
Method and system for generating a diffraction image comprises acquiring multiple frames from a direct-detection detector responsive to irradiating a sample with an electron beam. Multiple diffraction peaks in the multiple frames are identified. A first dose rate of at least one diffraction peak in the identified diffraction peaks is estimated in the counting mode. If the first dose rate is not greater than a threshold dose rate, a diffraction image including the diffraction peak is generated by counting electron detection events. Values of pixels belonging to the diffraction peak are determined with a first set of counting parameter values corresponding to a first coincidence area. Values of pixels not belonging to any of the multiple diffraction peaks are determined using a second, set of counting parameter values corresponding to a second, different, coincidence area.
摘要:
Embodiments of the invention relate to a mass resolving aperture that may be used in an ion implantation system that selectively exclude ion species based on charge to mass ratio (and/or mass to charge ratio) that are not desired for implantation, in an ion beam assembly. Embodiments of the invention relate to a mass resolving aperture that is segmented, adjustable, and/or presents a curved surface to the oncoming ion species that will strike the aperture. Embodiments of the invention also relate to the filtering of a flow of charged particles through a closed plasma channel (CPC) superconductor, or boson energy transmission system.
摘要:
A charged particle beam apparatus has a charged particle beam column configured to irradiate a charged particle beam, and a controller configured to control the charged particle beam column to irradiate the charged particle beam at a first pixel interval for a first region and to irradiate the charged particle beam at a second pixel interval different from the first pixel interval for a second region included in the first region. The first and second regions include plural first and second pixels each including first and second sub-pixels which are irradiated by the charged particle beam to generate secondary electrons. First and second sub-pixel images are formed based on the detected secondary electrons, and the first and second sub-pixel images are synthesized to form first and second images.
摘要:
A plasma etching method includes a first step of attracting a substrate onto a monopolar electrostatic chuck in a first plasma, which is a plasma of a noble gas, and stopping generation of the first plasma after the attracting of the substrate, and a second step of etching the substrate in a second plasma, which is a plasma of a halogen-based etching gas, and stopping generation of the second plasma after the etching of the substrate. In the first step, the generation of the first plasma is stopped when a positive voltage is applied from the monopolar electrostatic chuck to the substrate. In the second step, the generation of the second plasma is stopped when a negative voltage is applied from the monopolar electrostatic chuck to the substrate.
摘要:
An ElectroMagnetic-Mechanical Pulser can generate electron pulses at rates up to 50 GHz, energies up to 1 MeV, duty cycles up to 10%, and pulse widths between 100 fs and 10 ps. A modulating Transverse Deflecting Cavity (“TDC”) imposes a transverse modulation on a continuous electron beam, which is then chopped into pulses by an adjustable Chopping Collimating Aperture. Pulse dispersion due to the modulating TDC is minimized by a suppressing section comprising a plurality of additional TDC's and/or magnetic quadrupoles. In embodiments the suppression section includes a magnetic quadrupole and a TDC followed by four additional magnetic quadrupoles. The TDC's can be single-cell or triple-cell. A fundamental frequency of at least one TDC can be tuned by literally or virtually adjusting its volume. TDC's can be filled with vacuum, air, or a dielectric or ferroelectric material. Embodiments are easily switchable between passive, continuous mode and active pulsed mode.
摘要:
The invention relates to an electrode stack (70) comprising stacked electrodes (71-80) for manipulating a charged particle beam along an optical axis (A). Each electrode comprises an electrode body with an aperture for the charged particle beam. The electrode bodies are mutually spaced and the electrode apertures are coaxially aligned along the optical axis. The electrode stack comprises electrically insulating spacing structures (89) between each pair of adjacent electrodes for positioning the electrodes (71-80) at predetermined mutual distances along the axial direction (Z). A first electrode and a second electrode each comprise an electrode body with one or more support portions (86), wherein each support portion is configured to accommodate at least one spacing structure (89). The electrode stack has at least one clamping member (91-91c) configured to hold the support portions (86) of the first and second electrodes, as well as the intermediate spacing structure (89) together.
摘要:
A method of achieving ion beam uniformity control using ion beam blockers. The method includes generating an ion beam, detecting a current profile of said ion beam with an ion beam blocker unit, wherein said detected current profile is an initial current profile, blocking a portion of said ion beam with said ion beam blocker unit to achieve a second current profile that is different from the initial current profile, and implanting said ion beam into a workpiece after said blocking.
摘要:
Proposed is a method for providing uniform distribution of plasma density in a CCP plasma processing apparatus. According to the method the through gas holes of the showerhead of used in the plasma processing chamber of the apparatus are provided with conical nozzles formed on the side of the gas holes that face the gas reservoir of the cooler plate. The cone angle θ of the nozzles decreases in the direction from the peripheral portion to the central area of the showerhead in the range from 120° to 0°. Since the conical nozzles increase the gas gap between the showerhead and the cooler plate, more favorable conditions are created for electric breakdown. In order to protect the surfaces of the conical nozzles and gas holes from deterioration by hollow cathode discharge, these surface are coated by a protective coating resistant to electrical breakdown and chemical corrosion.