Abstract:
A guide system is provided that uses a plurality of sensors to identify and determine a clear path for an ambulatory vision impaired person. The system includes one or more wheels that rotate to propel the system, a platform supported by the one or more wheels and housing a processor, a rigid harness with a haptic feedback grip that is positioned to be grasped by an operator, and one or more sensors configured to sense information about the environment. In operation, the processor analyzes information sensed by the sensors to identify object in the path of the guide system and sends messages to the operator to allow the operator to avoid the identified objects. The messages may be sent to the operator via the haptic feedback grip or audibly via a speaker or via a wireless connection to a haptic or audio device being worn by the operator.
Abstract:
An apparatus includes a vibrational transducer, a placement band, a driver module and a control module. The placement band is configured to hold the vibrational transducer adjacent to the skin surface overlying the cricoid cartilage and trachea region of a patient's neck. The driver module is configured to apply a drive signal to the vibrational transducer. The control module is configured to receive at least one input configured to provide vibrational operating information and control the driver module to cause the vibrational transducer to apply a vibratory stimulation in an amount determined, at least in part, by the vibrational operating information.
Abstract:
A method to treat a dry eye condition of an individual, includes: receiving a switch signal generated based on a manipulation of a control switch at a handheld device; and activating a motor in response to the switch signal to oscillate a member at an oscillation frequency, the member having an elongated configuration, and having a portion for placement outside the individual; wherein the oscillation frequency is sufficient to induce tear production when the portion of the member is applied towards a surface of a body portion of the individual.
Abstract:
A single-lower-limb rehabilitation exoskeleton apparatus and control methods includes a controller, an intact lower-limb component and a paretic lower-limb component connecting communicatively with the controller. The controller is used to determine the current state of the intact lower-limb through the intact lower-limb component and the current state of the paretic lower-limb through the paretic lower-limb component. When the intact lower-limb component is in the lifting state, the movement data of the intact lower-limb is collected and sent to the controller. The controller is used to determine the corresponding gait data for the paretic lower-limb component according to the movement data of the intact lower-limb and send the gait data to the paretic lower-limb component. The paretic lower-limb component is used to drive the paretic lower-limb to move or walk according to the gait data while the intact lower-limb is in the supporting state.
Abstract:
Described herein are embodiments of a system and a device for performing remote ischemic conditioning that may be configured to treat a subject in accordance with particular usage restrictions and/or a particular treatment protocol. More particularly, in some embodiments a RIC device may include at least two parts, an inflatable cuff to fit around a limb of a subject and a controller that operates the inflatable cuff to inflate and deflate and thus alternate between ischemia and reperfusion of the limb in accordance with a treatment protocol. The inflatable cuff may include a computer-readable storage and that storage may include usage restrictions and/or configuration settings for the controller, to configure the controller to operate the inflatable cuff in accordance with the usage restrictions and to perform a particular treatment protocol when operating the inflatable cuff.
Abstract:
A respiratory acoustic analysis system for sensing and analyzing respiratory sounds of a patient may include a High Frequency Chest Wall Oscillation (HFCWO) vest, at least one sensor coupled with the HFCWO vest, and an algorithm stored in a processor for processing sensed data from the at least one acoustic sensor to provide processed data describing the respiratory sounds of the patient, in a form that can be used by a physician or other user.
Abstract:
An external defibrillator system is provided. The system includes: a graphical display; one or more sensors for obtaining data regarding chest compressions performed on a patient; and a controller configured to display on the graphical display numeric values for depth and/or rate of the chest compressions based upon the data from the one or more sensors. A method for using an external defibrillator including the steps of: obtaining data regarding chest compressions performed on a patient; and displaying on a graphical display screen of the defibrillator numeric values for depth and/or rate of the chest compressions based upon the data is also provided.
Abstract:
An external defibrillator system is provided. The system includes: a graphical display; one or more sensors for obtaining data regarding chest compressions performed on a patient; and a controller configured to display on the graphical display numeric values for depth and/or rate of the chest compressions based upon the data from the one or more sensors. A method for using an external defibrillator including the steps of: obtaining data regarding chest compressions performed on a patient; and displaying on a graphical display screen of the defibrillator numeric values for depth and/or rate of the chest compressions based upon the data is also provided.
Abstract:
A multimodal haptic device operating as a closed-loop system, the device including a pipeline configured to allow a closed-loop flow of a fluid medium, a manifold operatively connected to the pipeline, the manifold having a pump and a valve to control and regulate a flow of the fluid medium along the pipeline, and a display unit operatively connected to the pipeline, the display unit having a tactile display and a valve operatively connected to the tactile display for regulating an efflux of the fluid medium from the tactile display into the pipeline.
Abstract:
Systems and methods related to the field of cardiac resuscitation, and in particular to devices for assisting rescuers in performing cardio-pulmonary resuscitation (CPR).