Abstract:
Solid state light fixtures include a plurality of blue-shifted-yellow/green light emitting diode (“LED”) packages and a plurality of blue-shifted-red LED packages, where the solid state light fixture emits light having a correlated color temperature of between 1800 K and 5500 K, a CRI value of between 80 and 99, a CRI R9 value of between 15 and 75, and a Qg value of between 90 and 110 when the blue-shifted-yellow/green LED packages and the blue-shifted-red LED packages are operating at steady-state operating temperatures of at least 80° C.
Abstract:
An LED wafer includes LED dies on an LED substrate. The LED wafer and a carrier wafer are joined. The LED wafer that is joined to the carrier wafer is shaped. Wavelength conversion material is applied to the LED wafer that is shaped. Singulation is performed to provide multiple LED dies that are joined to a single carrier die. The multiple LED dies on the single carrier die are connected in series and/or in parallel by interconnection in the LED dies and/or in the single carrier die. The singulated devices may be mounted in an LED fixture to provide high light output per unit area. Related devices and fabrication methods are described.
Abstract:
A LED lamp has a non-optically transmissive base connected to an optically transmissive enclosure. A LED assembly emits light when energized through an electrical path from the base. A portion of the heat sink and lamp electronics extend from the base and into the enclosure such that at least an upper portion of the heat sink extends into the interior volume defined by the enclosure. The LED assembly is supported on top of the heat sink such that the LEDs are disposed in the volume of the enclosure. An optic element extends over the LEDs and at least the portion of the heat sink. The size of the non-optically transmissive base of the lamp is reduced relative to the optically transmissive enclosure such that a greater ratio of optically transmissive view space to non-optically transmissive base is provided.
Abstract:
An LED wafer includes LED dies on an LED substrate. The LED wafer and a carrier wafer are joined. The LED wafer that is joined to the carrier wafer is shaped. Wavelength conversion material is applied to the LED wafer that is shaped. Singulation is performed to provide LED dies that are joined to a carrier die. The singulated devices may be mounted in an LED fixture to provide high light output per unit area.
Abstract:
Monolithic LED chips are disclosed comprising a plurality of active regions on a submount, wherein the submount comprises integral electrically conductive interconnect elements in electrical contact with the active regions and electrically connecting at least some of the active regions in series. The submount also comprises an integral insulator element electrically insulating at least some of the interconnect elements and active regions from other elements of the submount. The active regions are mounted in close proximity to one another with at least some of the active regions having a space between adjacent ones of the active regions that is 10 percent or less of the width of one or more of the active regions. The space is substantially not visible when the LED chip is emitting, such that the LED chips emits light similar to a filament.
Abstract:
An LED wafer includes LED dies on an LED substrate. The LED wafer and a carrier wafer are joined. The LED wafer that is joined to the carrier wafer is shaped. Wavelength conversion material is applied to the LED wafer that is shaped. Singulation is performed to provide multiple LED dies that are joined to a single carrier die. The multiple LED dies on the single carrier die are connected in series and/or in parallel by interconnection in the LED dies and/or in the single carrier die. The singulated devices may be mounted in an LED fixture to provide high light output per unit area. Related devices and fabrication methods are described.
Abstract:
A Light Emitting Diode (LED) component includes a lead frame and an LED that is electrically connected to the lead frame without wire bonds, using a solder layer. The lead frame includes a metal anode pad, a metal cathode pad and a plastic cup. The LED die includes LED die anode and cathode contacts with a solder layer on them. The metal anode pad, metal cathode pad, plastic cup and/or the solder layer are configured to facilitate the direct die attach of the LED die to the lead frame without wire bonds. Related fabrication methods are also described.
Abstract:
A small form factor LED lighting system provides for color-controlled dimming. Embodiments of the invention use one or more small-footprint LED(s) that can emit light of different correlated color temperatures (CCTs, colors or spectral outputs). The CCT of the fixture or bulb can change when dimmed by disproportionate adjustment of the driving power for each color. The small size and footprint of the LEDs enables use in decorative LED lamps, such as those designed to replace candelabra style incandescent bulbs. Various options can be used to tune the performance and lighting characteristics of a lamp according to embodiments of the invention, such as the use of differing LED device package optics, the use of reflective materials in and/or around LED device packages, and the use of a secondary optic to produce an omnidirectional light pattern.
Abstract:
A semiconductor light emitting device includes an LED and an associated recipient luminophoric medium that includes respective first through fourth luminescent materials that down-convert respective first through fourth portions of the radiation emitted by the LED to radiation having respective first through fourth peak wavelengths. The first peak wavelength is in the green color range and the second through fourth peak wavelengths are in the red color range. The second and third luminescent materials each emit light having a full-width half maximum bandwidth of at least 70 nanometers, while the fourth luminescent material emits light having a full-width half maximum bandwidth of less than 60 nanometers. Embodiments that only include three luminescent materials are also disclosed.