摘要:
Particles have an ultrathin, conformal coating are made using atomic layer deposition methods. The base particles include ceramic and metallic materials. The coatings can also be ceramic or metal materials that can be deposited in a binary reaction sequence. The coated particles are useful as fillers for electronic packaging applications, for making ceramic or cermet parts, as supported catalysts, as well as other applications.
摘要:
A composition for substrate materials according to the present invention includes 70-95 wt. % of inorganic powder and 5-30 wt. % of thermosetting resin composition and is in a finely crushed condition. The composition for substrate materials is prepared, for example, by crushing into fine pieces and mixing the inorganic powder and the thermosetting resin composition. A heat conductive substrate is provided with an insulator body formed by heating and pressurizing said composition for substrate materials and a wiring pattern is provided in such a condition that it is exposed on the surface of the insulator body. A process for manufacturing the heat conductive substrate comprises forming said composition for substrate materials into the insulator body by casting the above mentioned composition for substrate materials into a metal mold to be heated and pressurized so that said thermosetting resin is cured.
摘要:
Methods for preparing nanocomposites with thermal properties modified by powder size below 100 nanometers. Both low-loaded and highly-loaded nanocomposites are included. Nanoscale coated, un-coated, whisker type fillers are taught. Thermal nanocomposite layers may be prepared on substrates.
摘要:
A composition for substrate materials according to the present invention includes 70-95 wt. % of inorganic powder and 5-30 wt. % of thermosetting resin composition and is in a finely crushed condition. The composition for substrate materials is prepared, for example, by crushing into fine pieces and mixing the inorganic powder and the thermosetting resin composition. A heat conductive substrate is provided with an insulator body formed by heating and pressurizing said composition for substrate materials and a wiring pattern is provided in such a condition that it is exposed on the surface of the insulator body. A process for manufacturing the heat conductive substrate comprises forming said composition for substrate materials into the insulator body by casting the above mentioned composition for substrate materials into a metal mold to be heated and pressurized so that said thermosetting resin is cured.
摘要:
The invention comprises a self-lubricating ceramic composite characterized as having a low porosity derived from a mixture of at least one ceramic powder preferably selected from the group consisting of silicon nitride, silicon carbide, zirconia, alumina, zirconium nitride, tungsten carbide, and titanium carbide; a cemetitious binder, effective amounts of at least one metal silicide, and at least one metal oxide. The ceramic powder mixture can be slurried with sufficient amounts of water and subsequently subjected to pressures of about 6.0 to 7.0 MPa in a mold at temperatures of about 125null to 175null C. to form a self-lubricating ceramic composite capable of maintaining hot-hardness temperatures above 750null C. These self-lubricating ceramic composites are particularly useful in the manufacture of high-performance turbine engines, including engine parts, bearings, gears, rotors and in other areas where high-heat lubricating properties of the ceramic composite are required.
摘要:
A coating and devices using the coating are provided. The coating is applied in liquid form and dried or otherwise cured to form a durable adherent coating resistant to high temperatures and having optional hydrophobic properties. The coating formulation contains an aqueous formulation of silica, one or more fillers, and sufficient base, (e.g., potassium hydroxide), to have a pH exceeding about 10.5 during at least part of the formulation process. The formulation may contain a compound(s) that affects surface free energy, energy to make the cured coating hydrophobic. Such compounds include silanes containing halogens (e.g., fluorine or chlorine) and in particular silanes containing one or more hydrolyzable groups attached to at least one silicon atom and a group containing one or more halogens (e.g., chlorine or fluorine). A medical instrument (e.g., electrosurgical instrument) may be at least partially covered by a coating using the formulation.
摘要:
A light-shielding film for optical element includes at least a resin and a colorant. The light-shielding film for optical element has an average extinction coefficient of 0.03 or more and 0.15 or less as an average of extinction coefficients of the whole light-shielding film for light having wavelengths ranging from 400 to 700 nm.
摘要:
A coating and devices using the coating are provided. The coating is applied in liquid form and dried or otherwise cured to form a durable adherent coating resistant to high temperatures and having optional hydrophobic properties. The coating formulation contains an aqueous formulation of silica, one or more fillers, and sufficient base, (e.g., potassium hydroxide), to have a pH exceeding about 10.5 during at least part of the formulation process. The formulation may contain a compound(s) that affects surface free energy, energy to make the cured coating hydrophobic. Such compounds include silanes containing halogens (e.g., fluorine or chlorine) and in particular silanes containing one or more hydrolyzable groups attached to at least one silicon atom and a group containing one or more halogens (e.g., chlorine or fluorine). A medical instrument (e.g., electrosurgical instrument) may be at least partially covered by a coating using the formulation.
摘要:
Methods for preparing nanocomposites with thermal properties modified by powder size below 100 nanometers. Both low-loaded and highly-loaded nanocomposites are included. Nanoscale coated, un-coated, whisker type fillers are taught. Thermal nanocomposite layers may be prepared on substrates.