摘要:
An integrated circuit structure includes a semiconductor chip having a first region and a second region; a dielectric layer formed on the first region and the second region of the semiconductor chip; a first elongated under-bump metallization (UBM) connector formed in the dielectric layer and on the first region of the semiconductor chip and having a first longer axis extending in a first direction; and a second elongated UBM connector formed in the dielectric layer on the second region of the semiconductor chip and having a second longer axis extending in a second direction. The first direction is different from the second direction.
摘要:
An integrated circuit structure and methods for forming the same are provided. The integrated circuit structure includes a substrate; a through-silicon via (TSV) extending into the substrate; a TSV pad spaced apart from the TSV; and a metal line over, and electrically connecting, the TSV and the TSV pad.
摘要:
A T-shaped post for semiconductor devices is provided. The T-shaped post has an under-bump metallization (UBM) section and a pillar section extending from the UBM section. The UBM section and the pillar section may be formed of a same material or different materials. In an embodiment, a substrate, such as a die, wafer, printed circuit board, packaging substrate, or the like, having T-shaped posts is attached to a contact of another substrate, such as a die, wafer, printed circuit board, packaging substrate, or the like. The T-shaped posts may have a solder material pre-formed on the pillar section such that the pillar section is exposed or such that the pillar section is covered by the solder material. In another embodiment, the T-shaped posts may be formed on one substrate and the solder material formed on the other substrate.
摘要:
Methods for forming lead free solder interconnections for integrated circuits. A copper column extends from an input/output terminal of an integrated circuit. A cap layer of material is formed on the input/output terminal of the integrated circuit. A lead free solder connector is formed on the cap layer. A substrate having a metal finish solder pad is aligned with the solder connector. An intermetallic compound is formed at the interface between the cap layer and the lead free solder connector. A solder connection is formed between input/output terminal of the integrated circuit and the metal finish pad that is less than 0.5 weight percent copper, and the intermetallic compound is substantially free of copper.
摘要:
Lead free solder interconnections for integrated circuits. A copper column extends from an input/output terminal of an integrated circuit. A cap layer of material is formed on the input/output terminal of the integrated circuit. A lead free solder connector is formed on the cap layer. A substrate having a metal finish solder pad is aligned with the solder connector. An intermetallic compound is formed at the interface between the cap layer and the lead free solder connector. A solder connection is formed between the input/output terminal of the integrated circuit and the metal finish pad that is less than 0.5 weight percent copper, and the intermetallic compound is substantially free of copper.
摘要:
A semiconductor device having one or more through-silicon vias (TSVs) is provided. The TSVs are formed such that sidewalls of the TSVs have a scalloped surface. In an embodiment, the sidewalls of the TSVs are sloped wherein a top and bottom of the TSVs have different dimensions. The TSVs may have a V-shape wherein the TSVs have a wider dimension on a circuit side of the substrate, or an inverted V-shape wherein the TSVs have a wider dimension on a backside of the substrate. The scalloped surfaces of the sidewalls and/or sloped sidewalls allow the TSVs to be more easily filled with a conductive material such as copper.
摘要:
An integrated circuit structure includes a substrate; a through-silicon via (TSV) in the substrate, the TSV being tapered; a hard mask region extending from a top surface of the substrate into the substrate, wherein the hard mask encircles a top portion of the TSV; dielectric layers over the substrate; and a metal post extending from a top surface of the dielectric layers to the TSV, wherein the metal post comprises same materials as the TSV.
摘要:
A conductive pillar structure for a die includes a passivation layer having a metal contact opening over a substrate. A bond pad has a first portion inside the metal contact opening and a second portion overlying the passivation layer. The second portion of the bond pad has a first width. A buffer layer over the bond pad has a pillar contact opening with a second width to expose a portion of the bond pad. A conductive pillar has a first portion inside the pillar contact opening and a second portion over the buffer layer. The second portion of the conductive pillar has a third width. A ratio of the second width to the first width is between about 0.35 and about 0.65. A ratio of the second width to the third width is between about 0.35 and about 0.65.
摘要:
A method of forming an integrated circuit structure is provided. The method includes forming a metal pad at a major surface of a semiconductor chip, forming an under-bump metallurgy (UBM) over the metal pad such that the UBM and the metal pad are in contact, forming a dummy pattern at a same level as the metal pad, the dummy pattern formed of a same metallic material as the metal pad and electrically disconnected from the metal pad, and forming a metal bump over the UBM such that the metal bump is electrically connected to the UBM and no metal bump in the semiconductor chip is formed over the dummy pattern.
摘要:
A system and method for forming a TSV contact is presented. A preferred embodiment includes a TSV in contact with a portion of the uppermost metal layer of a semiconductor die. The interface between the TSV conductor and the contact pad is preferably characterized by a non-planar zigzag pattern that forms a grid pattern of contacts. Alternatively, the contacts may form a plurality of metal lines that make contact with the contact pad.