-
61.
公开(公告)号:US5788738A
公开(公告)日:1998-08-04
申请号:US707341
申请日:1996-09-03
Applicant: Shahid Pirzada , Tapesh Yadav
Inventor: Shahid Pirzada , Tapesh Yadav
IPC: B01J12/00 , B01J12/02 , B01J19/24 , B22F9/12 , C01B13/14 , C01B19/00 , C01B21/06 , C01B31/36 , C01B35/04 , C01F5/06 , C01F11/06 , C01F17/00 , C01G23/00 , C01G41/02 , C01G53/00 , C04B2/10
CPC classification number: B82Y30/00 , B01J12/005 , B01J12/02 , B01J19/088 , B01J19/24 , B22F9/12 , B82Y25/00 , B82Y5/00 , C01B13/145 , C01B19/007 , C01B21/062 , C01B31/36 , C01B35/04 , C01F11/06 , C01F17/0043 , C01F5/06 , C01G23/006 , C01G41/02 , C01G53/006 , C04B2/10 , B01J2219/00094 , B01J2219/00135 , B01J2219/00177 , B01J2219/0018 , B01J2219/0894 , B22F2999/00 , C01P2002/01 , C01P2002/02 , C01P2002/34 , C01P2002/60 , C01P2002/72 , C01P2004/03 , C01P2004/04 , C01P2004/38 , C01P2004/51 , C01P2004/54 , C01P2004/61 , C01P2004/62 , C01P2004/64 , C01P2006/10 , C01P2006/12 , C01P2006/40 , C01P2006/60
Abstract: A thermal reactor system that produces nanoscale powders by ultra-rapid thermal quench processing of high-temperature vapors through a boundary-layer converging-diverging nozzle. A gas suspension of precursor material is continuously fed to a thermal reaction chamber and vaporized under conditions that minimize superheating and favor nucleation of the resulting vapor. According to one aspect of the invention, the high temperature vapor is quenched using the principle of Joule-Thompson adiabatic expansion. Immediately after the initial nucleation stages, the vapor stream is passed through the nozzle and rapidly quenched through expansion at rates of at least 1,000.degree. C. per second, preferably greater than 1,000,000.degree. C. per second, to block the continued growth of the nucleated particles and produce a nanosize powder suspension of narrow particle-size distribution. According to another aspect of the invention, a gaseous boundary-layer stream is injected to form a blanket over the internal surface of the nozzle to prevent vapor condensation in the throat of the nozzle and its potential failure.
Abstract translation: 一种热反应器系统,通过边界层会聚发散喷嘴通过高温蒸气的超快速热淬火处理产生纳米级粉末。 将前体材料的气体悬浮液连续地供给到热反应室,并在使过热最小化并有利于所得蒸汽成核的条件下蒸发。 根据本发明的一个方面,使用焦耳汤普森绝热膨胀原理淬火高温蒸气。 在初始成核阶段之后,蒸气流通过喷嘴,并以每秒至少1000℃,优选大于1,000,000℃/秒的速率通过膨胀快速骤冷,以阻止有成核的 颗粒并产生窄粒度分布的纳米尺寸粉末悬浮液。 根据本发明的另一方面,喷射气体边界层流以在喷嘴的内表面上形成橡皮布,以防止喷嘴喉部中的蒸汽冷凝及其潜在的故障。
-
62.Nano-engineered inks, methods for their manufacture and their applications 有权
Title translation: 纳米工程油墨,其制造方法及其应用公开(公告)号:US08263685B2
公开(公告)日:2012-09-11
申请号:US13050361
申请日:2011-03-17
Applicant: Tapesh Yadav
Inventor: Tapesh Yadav
IPC: C08K9/00 , C08K3/10 , G11B11/105
CPC classification number: C09C3/08 , B82Y30/00 , C01P2004/64 , C01P2006/22 , C09C1/3669 , C09C1/402 , C09C1/62 , C09C3/10 , C09D11/03 , C09D11/037 , Y10S977/786 , Y10T428/26
Abstract: Nanoparticle dispersions, inks, pastes, lotions and methods of their manufacture are disclosed. Multifunctional, nanocomposite, hollow nanoparticles, and coated nanoparticle dispersions are also discussed.
Abstract translation: 公开了纳米颗粒分散体,油墨,糊剂,洗剂及其制造方法。 还讨论了多功能纳米复合材料,中空纳米颗粒和涂覆的纳米颗粒分散体。
-
63.
公开(公告)号:US20120164561A1
公开(公告)日:2012-06-28
申请号:US12121099
申请日:2008-05-15
Applicant: Tapesh Yadav
Inventor: Tapesh Yadav
CPC classification number: B82Y30/00 , H01M4/364 , H01M4/42 , H01M4/463 , H01M4/48 , H01M4/50 , H01M4/62 , H01M4/622 , H01M2004/021
Abstract: Nanoparticles comprising zinc, methods of manufacturing nanoparticles comprising zinc, and applications of nanoparticles comprising zinc, such as electrically conducting formulations, reagents for fine chemical synthesis, pigments and catalysts are provided, and more particularly, a coating, comprising a nanomaterial composition comprising zinc and at least one metal other than zinc, wherein the at least one metal comprises an element that (a) has an oxidation state higher than an oxidation state of zinc and that (b) dopes zinc in the nanomaterial composition, and wherein the coating has an electrical conductivity greater than 0.0001 mhos·cm.
Abstract translation: 提供了包含锌的纳米颗粒,制造包含锌的纳米颗粒的方法,以及包含锌的纳米颗粒的应用,例如导电制剂,用于精细化学合成的试剂,颜料和催化剂,更具体地,涉及一种包含纳米材料组合物的涂层,其包含锌和 至少一种不是锌的金属,其中所述至少一种金属包含(a)具有高于锌的氧化态的氧化态的元素和(b)所述纳米材料组合物中的掺杂锌,并且其中所述涂层具有 电导率大于0.0001 mhos·cm。
-
公开(公告)号:US07857244B2
公开(公告)日:2010-12-28
申请号:US11641048
申请日:2006-12-19
Applicant: Tapesh Yadav , Karl Pfaffenbach
Inventor: Tapesh Yadav , Karl Pfaffenbach
IPC: B02C19/00
CPC classification number: H01G4/12 , A62C31/03 , B01J12/005 , B01J12/02 , B01J19/24 , B01J2219/00094 , B01J2219/00135 , B01J2219/00155 , B01J2219/00177 , B01J2219/0018 , B01J2219/0894 , B05B1/12 , B22F1/0003 , B22F9/12 , B22F2999/00 , B29C70/58 , B32B2309/022 , B82B1/00 , B82Y30/00 , C01B13/145 , C01B19/007 , C01B21/062 , C01B32/956 , C01B35/04 , C01F5/06 , C01F11/06 , C01F17/0043 , C01G23/006 , C01G41/02 , C01G53/006 , C01P2002/72 , C01P2004/03 , C01P2004/04 , C01P2004/51 , C01P2004/54 , C01P2004/64 , C01P2006/12 , C01P2006/40 , C01P2006/80 , C04B2/10 , C04B20/0004 , C04B35/565 , C04B35/62222 , C04B35/638 , C04B41/52 , C04B41/89 , C04B2235/6025 , C08K3/01 , C08K3/08 , C08K2201/011 , C08K2201/016 , C09C3/006 , C09C3/04 , H01C7/112 , H01C17/06513 , H01G4/33 , H01M4/9066 , H01M8/1213 , H01M8/1246 , H01M8/1253 , Y02E60/525 , Y02P70/56 , Y10S977/84 , Y10S977/90 , B22F1/0018 , B22F2202/13
Abstract: Methods for preparing high aspect ratio nanomaterials from spherical nanomaterials useful for oxides, nitrides, carbides, borides, metals, alloys, chalcogenides, and other compositions.
Abstract translation: 用于氧化物,氮化物,碳化物,硼化物,金属,合金,硫属化物和其它组合物的球形纳米材料制备高纵横比纳米材料的方法。
-
65.Products comprising nano-precision engineered electronic components 有权
Title translation: 产品包括纳米精密工程电子元器件公开(公告)号:US20100279106A1
公开(公告)日:2010-11-04
申请号:US12000310
申请日:2007-12-11
Applicant: Tapesh Yadav , Hongxing Hu
Inventor: Tapesh Yadav , Hongxing Hu
CPC classification number: B82Y30/00 , B01J12/005 , B01J12/02 , B01J19/24 , B01J2219/00094 , B01J2219/00135 , B01J2219/00155 , B01J2219/00177 , B01J2219/0018 , B01J2219/0894 , B22F1/0003 , B22F9/12 , B22F2999/00 , B29C70/58 , B82B1/00 , B82Y5/00 , B82Y25/00 , C01B13/145 , C01B19/007 , C01B21/062 , C01B32/956 , C01B35/04 , C01F5/06 , C01F11/06 , C01F17/0043 , C01G23/006 , C01G41/02 , C01P2002/01 , C01P2002/02 , C01P2002/34 , C01P2002/54 , C01P2002/60 , C01P2002/72 , C01P2004/03 , C01P2004/04 , C01P2004/38 , C01P2004/51 , C01P2004/54 , C01P2004/61 , C01P2004/62 , C01P2004/64 , C01P2004/82 , C01P2006/10 , C01P2006/12 , C01P2006/40 , C01P2006/60 , C01P2006/80 , C04B2/10 , C04B35/62222 , C04B41/52 , C04B41/89 , C08J5/005 , C08K3/01 , C08K3/08 , C08K2201/011 , H01C7/112 , H01F1/0063 , H01G4/12 , H01G4/33 , H01M4/9066 , H01M8/1213 , H01M8/1246 , H01M8/1253 , Y02E60/525 , Y02P40/42 , Y02P70/56 , Y10S977/89 , Y10T29/49002 , Y10T29/49082 , Y10T428/26 , B22F2202/13 , B22F1/0018
Abstract: Electronic devices prepared from nanoscale powders are described. Methods for utilizing nanoscale powders and related nanotechnology to prepare capacitors, inductors, resistors, thermistors, varistors, filters, arrays, interconnects, optical components, batteries, fuel cells, sensors and other products are discussed.
Abstract translation: 描述了由纳米级粉末制备的电子器件。 讨论了利用纳米级粉末和相关纳米技术制备电容器,电感器,电阻器,热敏电阻器,变阻器,滤波器,阵列,互连,光学部件,电池,燃料电池,传感器和其他产品的方法。
-
66.TUNGSTEN COMPRISING NANOMATERIALS AND RELATED NANOTECHNOLOGY 审中-公开
Title translation: 包含纳米材料和相关纳米技术的纳米技术公开(公告)号:US20100210450A1
公开(公告)日:2010-08-19
申请号:US12768020
申请日:2010-04-27
Applicant: Tapesh Yadav
Inventor: Tapesh Yadav
IPC: C09K11/68 , C04B14/30 , C09K3/00 , H01B1/02 , C09D1/00 , B29C45/00 , B01J23/30 , B01J31/04 , B01J31/12
CPC classification number: C01G41/00 , B82Y30/00 , C01P2004/64 , C01P2006/12 , C09C1/00 , Y10S977/811 , Y10S977/812 , Y10T428/2982
Abstract: Nanoparticles comprising tungsten, methods of manufacturing nanoparticles comprising tungsten, and applications of nanoparticles comprising tungsten, such as electronics, optical devices, photonics, reagents for fine chemical synthesis, pigments, and catalysts are provided.
Abstract translation: 提供了包含钨的纳米颗粒,制造包含钨的纳米颗粒的方法,以及包含钨的纳米颗粒的应用,例如电子学,光学器件,光子学,用于精细化学合成的试剂,颜料和催化剂。
-
公开(公告)号:US07776383B2
公开(公告)日:2010-08-17
申请号:US11068714
申请日:2005-03-01
Applicant: Tapesh Yadav , Clayton Kostelecky
Inventor: Tapesh Yadav , Clayton Kostelecky
CPC classification number: H01L23/5328 , A61L27/06 , B01J12/005 , B01J12/02 , B01J19/0046 , B01J19/24 , B01J23/002 , B01J23/08 , B01J23/14 , B01J35/0013 , B01J37/18 , B01J2219/00094 , B01J2219/00135 , B01J2219/00155 , B01J2219/00177 , B01J2219/0018 , B01J2219/00317 , B01J2219/00385 , B01J2219/0043 , B01J2219/00653 , B01J2219/00707 , B01J2219/00745 , B01J2219/00747 , B01J2219/0075 , B01J2219/00754 , B01J2219/00756 , B01J2219/0894 , B01J2523/00 , B05B1/12 , B22F1/0003 , B22F9/04 , B22F9/12 , B22F2009/041 , B22F2998/00 , B22F2999/00 , B29C70/58 , B82B1/00 , B82Y5/00 , B82Y25/00 , B82Y30/00 , C01B3/001 , C01B13/145 , C01B19/007 , C01B21/062 , C01B32/956 , C01B35/04 , C01F5/06 , C01F11/06 , C01F17/0043 , C01G23/006 , C01G25/00 , C01G25/02 , C01G41/02 , C01G53/00 , C01G53/006 , C01P2002/01 , C01P2002/02 , C01P2002/34 , C01P2002/54 , C01P2002/60 , C01P2002/72 , C01P2004/03 , C01P2004/04 , C01P2004/38 , C01P2004/51 , C01P2004/54 , C01P2004/61 , C01P2004/62 , C01P2004/64 , C01P2006/10 , C01P2006/12 , C01P2006/40 , C01P2006/60 , C04B35/00 , C04B35/01 , C04B35/265 , C04B35/2666 , C04B35/453 , C04B35/457 , C04B35/56 , C04B35/5611 , C04B35/581 , C04B35/62222 , C04B41/009 , C04B41/4549 , C04B41/52 , C04B41/87 , C04B41/89 , C04B41/90 , C04B2111/00844 , C04B2235/3241 , C04B2235/3262 , C04B2235/3275 , C04B2235/3279 , C04B2235/3284 , C04B2235/3298 , C04B2235/79 , C04B2235/80 , C08K3/01 , C08K3/08 , C08K2201/011 , C08K2201/016 , G01N27/127 , H01C7/112 , H01C17/0652 , H01F1/0036 , H01F1/0045 , H01F1/36 , H01F41/0246 , H01G4/12 , H01G4/33 , H01L23/49883 , H01L2924/0002 , H01L2924/3011 , H01M4/02 , H01M4/04 , H01M4/242 , H01M4/581 , H01M4/5815 , H01M4/582 , H01M4/8875 , H01M4/8885 , H01M4/90 , H01M4/9066 , H01M8/1213 , H01M8/1246 , H01M8/1253 , H01M10/0562 , H01M10/0566 , Y02E60/324 , Y02E60/525 , Y02P70/56 , Y10S428/90 , Y10S977/762 , Y10S977/783 , Y10S977/81 , Y10S977/811 , Y10S977/948 , Y10T29/4902 , Y10T428/12056 , Y10T428/1216 , Y10T428/12181 , Y10T428/25 , Y10T428/254 , Y10T428/256 , Y10T428/257 , Y10T428/259 , Y10T428/2982 , Y10T428/2991 , Y10T428/2998 , B01J2523/33 , B01J2523/43 , B22F1/0018 , B22F2202/13 , B01J2523/31 , B01J2523/54 , B01J2523/67 , B01J2523/72 , B01J2523/845 , B01J2523/847 , B01J2523/22 , B01J2523/3706 , B01J2523/48 , B01J2523/18 , B01J2523/27 , B01J2523/824 , B01J2523/842 , B01J2523/17 , B01J2523/47 , B01J2523/56 , B01J2523/57 , C04B41/4539 , C04B41/5059 , C04B41/5116 , C04B41/5122 , C04B41/5027 , C04B41/5049 , C04B41/524 , C04B35/10 , B22F2201/11 , B01J2523/305 , B01J2523/69 , H01L2924/00
Abstract: Methods for discover of ceramic nanomaterial suitable for an application by preparing an array of first layer of electrodes and printing ceramic nanomaterial films on the electrodes. A second layer of electrodes is printed on the nanomaterial films of ceramics to form an electroded film array. The electroded film array is sintered. Properties of the sintered electroded film array are measured and one of the array elements with properties suited for the particular application is identified.
Abstract translation: 通过制备第一层电极阵列并在电极上印刷陶瓷纳米材料膜来发现适合于应用的陶瓷纳米材料的方法。 在陶瓷的纳米材料膜上印刷第二层电极以形成电镀膜阵列。 电镀膜阵列被烧结。 测量烧结的电镀薄膜阵列的性能,并且识别出具有适用于特定应用的特性的阵列元件之一。
-
68.High purity nanoscale metal oxide powders and methods to produce such powders 有权
Title translation: 高纯度纳米级金属氧化物粉末及其制备方法公开(公告)号:US07547431B2
公开(公告)日:2009-06-16
申请号:US10315272
申请日:2002-12-10
Applicant: Tapesh Yadav , Karl Pfaffenbach
Inventor: Tapesh Yadav , Karl Pfaffenbach
IPC: C01B13/00
CPC classification number: B82Y30/00 , B01J19/088 , B01J2219/0886 , B01J2219/0894 , B22F1/0018 , B22F9/12 , B22F9/14 , B22F9/30 , B22F2999/00 , C01B13/14 , C01B13/20 , C01B21/06 , C01B21/0828 , C01B32/956 , C01F5/06 , C01F17/0043 , C01G1/02 , C01G19/00 , C01G25/00 , C01G49/04 , C01G49/06 , C01G49/08 , C01G53/04 , C01P2002/34 , C01P2002/52 , C01P2004/54 , C01P2004/61 , C01P2004/62 , C01P2004/64 , C01P2006/12 , C01P2006/80 , C04B35/62665 , C04B41/89 , C04B2235/3205 , C04B2235/3206 , C04B2235/3208 , C04B2235/3215 , C04B2235/3224 , C04B2235/3227 , C04B2235/3229 , C04B2235/3236 , C04B2235/3249 , C04B2235/3272 , C04B2235/3282 , C04B2235/3286 , C04B2235/3293 , C04B2235/3427 , C04B2235/3804 , C04B2235/3817 , C04B2235/3826 , C04B2235/3852 , C04B2235/3895 , C04B2235/449 , C04B2235/5409 , C04B2235/5445 , C04B2235/5454 , C04B2235/72 , C04B2235/721 , B22F2202/13
Abstract: A method of producing high purity nanoscale powders in which the purity of powders produced by the method exceeds 99.99%. Fine powders produced are of size preferably less than 1 micron, and more preferably less than 100 nanometers. Methods for producing such powders in high volume, low-cost, and reproducible quality are also outlined. The fine powders are envisioned to be useful in various applications such as biomedical, sensor, electronic, electrical, photonic, thermal, piezo, magnetic, catalytic and electrochemical products.
Abstract translation: 一种生产高纯度纳米级粉末的方法,其中通过该方法生产的粉末的纯度超过99.99%。 所生产的细粉末的尺寸优选小于1微米,更优选小于100纳米。 还概述了生产这种大量,低成本和可再生质量的粉末的方法。 细粉末可以用于生物医学,传感器,电子学,电学,光子学,热学,压电学,磁学,催化学和电化学产品等各种应用。
-
公开(公告)号:US20080142764A1
公开(公告)日:2008-06-19
申请号:US11808766
申请日:2007-06-12
Applicant: Tapesh Yadav , Clayton Kostelecky
Inventor: Tapesh Yadav , Clayton Kostelecky
IPC: H01B1/00
CPC classification number: C04B20/0004 , B01J12/005 , B01J12/02 , B01J19/24 , B01J2219/00094 , B01J2219/00135 , B01J2219/00155 , B01J2219/00177 , B01J2219/0018 , B01J2219/0894 , B05B1/12 , B22F1/0003 , B22F1/0018 , B22F1/0044 , B22F1/02 , B22F9/12 , B22F2999/00 , B29C70/58 , B82B1/00 , B82Y20/00 , B82Y25/00 , B82Y30/00 , C01B13/145 , C01B13/363 , C01B19/007 , C01B21/062 , C01B25/08 , C01B32/90 , C01B32/914 , C01B32/956 , C01B35/04 , C01F5/06 , C01F11/06 , C01F17/0043 , C01G15/00 , C01G19/00 , C01G19/006 , C01G19/02 , C01G23/006 , C01G41/02 , C01G49/0018 , C01G49/0063 , C01G53/006 , C01P2002/01 , C01P2002/02 , C01P2002/34 , C01P2002/52 , C01P2002/54 , C01P2002/60 , C01P2002/72 , C01P2004/03 , C01P2004/04 , C01P2004/10 , C01P2004/16 , C01P2004/20 , C01P2004/38 , C01P2004/51 , C01P2004/52 , C01P2004/54 , C01P2004/61 , C01P2004/62 , C01P2004/64 , C01P2004/84 , C01P2004/86 , C01P2006/10 , C01P2006/12 , C01P2006/42 , C04B2/10 , C04B20/1018 , C04B20/1029 , C04B26/02 , C04B26/06 , C04B35/01 , C04B35/265 , C04B35/453 , C04B35/457 , C04B35/547 , C04B35/62222 , C04B35/6265 , C04B35/628 , C04B35/63456 , C04B35/653 , C04B41/009 , C04B41/52 , C04B41/89 , C04B41/90 , C04B2111/00008 , C04B2111/00482 , C04B2111/00844 , C04B2235/3201 , C04B2235/3206 , C04B2235/3241 , C04B2235/3262 , C04B2235/3275 , C04B2235/3279 , C04B2235/3284 , C04B2235/3286 , C04B2235/3298 , C04B2235/3418 , C04B2235/444 , C04B2235/5409 , C04B2235/5454 , C04B2235/549 , C04B2235/6562 , C04B2235/6565 , C08K3/01 , C08K3/013 , C08K3/08 , C08K9/02 , C08K2201/011 , C09C1/00 , C09C1/0081 , C09C1/22 , C09C1/627 , C09C3/08 , C09C3/10 , H01B1/22 , H01C7/105 , H01C7/112 , H01F1/0063 , H01F1/344 , H01F1/36 , H01G4/12 , H01G4/33 , H01M4/5815 , H01M4/9066 , H01M6/20 , H01M6/36 , H01M8/1213 , H01M8/1246 , H01M8/1253 , H01M2004/021 , Y02E60/525 , Y02P40/42 , Y02P70/56 , Y10S977/70 , Y10T428/2998 , Y10T428/31663 , B22F2202/13 , B22F1/0059 , C04B14/30 , C04B20/008 , C04B24/2623 , C04B14/322 , C04B14/325 , C04B14/38 , C04B2103/40 , C04B2103/408 , C04B35/10 , C04B41/4539 , C04B41/5116 , C04B41/5122 , C04B41/4549 , C04B41/5027 , C04B41/5049
Abstract: Methods for preparing low resistivity nanocomposite layers that simultaneously offer optical clarity, wear resistance and superior functional performance. Nanofillers and a substance having a polymer are mixed. Both low-loaded and highly-loaded nanocomposites are included. Nanoscale coated and un-coated fillers may be used. Nanocomposite films may be coated on substrates.
Abstract translation: 制备低电阻率纳米复合层的方法,同时提供光学透明度,耐磨性和优异的功能性能。 纳米填料和具有聚合物的物质混合。 包括低负载和高负载的纳米复合材料。 可以使用纳米涂层和未涂覆的填料。 纳米复合膜可以涂覆在基材上。
-
公开(公告)号:US07388042B2
公开(公告)日:2008-06-17
申请号:US10424395
申请日:2003-04-28
Applicant: Tapesh Yadav , Clayton Kostelecky
Inventor: Tapesh Yadav , Clayton Kostelecky
CPC classification number: C04B20/0004 , B01J12/005 , B01J12/02 , B01J19/24 , B01J2219/00094 , B01J2219/00135 , B01J2219/00155 , B01J2219/00177 , B01J2219/0018 , B01J2219/0894 , B05B1/12 , B22F1/0003 , B22F1/0018 , B22F1/0044 , B22F1/02 , B22F9/12 , B22F2999/00 , B29C70/58 , B82B1/00 , B82Y20/00 , B82Y25/00 , B82Y30/00 , C01B13/145 , C01B13/363 , C01B19/007 , C01B21/062 , C01B25/08 , C01B32/90 , C01B32/914 , C01B32/956 , C01B35/04 , C01F5/06 , C01F11/06 , C01F17/0043 , C01G15/00 , C01G19/00 , C01G19/006 , C01G19/02 , C01G23/006 , C01G41/02 , C01G49/0018 , C01G49/0063 , C01G53/006 , C01P2002/01 , C01P2002/02 , C01P2002/34 , C01P2002/52 , C01P2002/54 , C01P2002/60 , C01P2002/72 , C01P2004/03 , C01P2004/04 , C01P2004/10 , C01P2004/16 , C01P2004/20 , C01P2004/38 , C01P2004/51 , C01P2004/52 , C01P2004/54 , C01P2004/61 , C01P2004/62 , C01P2004/64 , C01P2004/84 , C01P2004/86 , C01P2006/10 , C01P2006/12 , C01P2006/42 , C04B2/10 , C04B20/1018 , C04B20/1029 , C04B26/02 , C04B26/06 , C04B35/01 , C04B35/265 , C04B35/453 , C04B35/457 , C04B35/547 , C04B35/62222 , C04B35/6265 , C04B35/628 , C04B35/63456 , C04B35/653 , C04B41/009 , C04B41/52 , C04B41/89 , C04B41/90 , C04B2111/00008 , C04B2111/00482 , C04B2111/00844 , C04B2235/3201 , C04B2235/3206 , C04B2235/3241 , C04B2235/3262 , C04B2235/3275 , C04B2235/3279 , C04B2235/3284 , C04B2235/3286 , C04B2235/3298 , C04B2235/3418 , C04B2235/444 , C04B2235/5409 , C04B2235/5454 , C04B2235/549 , C04B2235/6562 , C04B2235/6565 , C08K3/01 , C08K3/013 , C08K3/08 , C08K9/02 , C08K2201/011 , C09C1/00 , C09C1/0081 , C09C1/22 , C09C1/627 , C09C3/08 , C09C3/10 , H01B1/22 , H01C7/105 , H01C7/112 , H01F1/0063 , H01F1/344 , H01F1/36 , H01G4/12 , H01G4/33 , H01M4/5815 , H01M4/9066 , H01M6/20 , H01M6/36 , H01M8/1213 , H01M8/1246 , H01M8/1253 , H01M2004/021 , Y02E60/525 , Y02P40/42 , Y02P70/56 , Y10S977/70 , Y10T428/2998 , Y10T428/31663 , B22F2202/13 , B22F1/0059 , C04B14/30 , C04B20/008 , C04B24/2623 , C04B14/322 , C04B14/325 , C04B14/38 , C04B2103/40 , C04B2103/408 , C04B35/10 , C04B41/4539 , C04B41/5116 , C04B41/5122 , C04B41/4549 , C04B41/5027 , C04B41/5049
Abstract: Biomedical nanocomposite implants having both low-loaded and highly-loaded nanocomposites. A matrix and nanofillers are provided wherein the nanofillers are dispersed in the matrix to form a composite. Nanoscale coated and un-coated fillers are used. Methods for preparing biomedical nanocomposite implants are also illustrated.
Abstract translation: 具有低负载和高负载纳米复合材料的生物医学纳米复合物植入物。 提供了基质和纳米填料,其中纳米填料分散在基质中以形成复合材料。 使用纳米涂层和未涂覆的填料。 还示出了制备生物医学纳米复合物植入物的方法。
-
-
-
-
-
-
-
-
-