Abstract:
Provided herein are methods of directed self-assembly (DSA) on atomic layer chemical patterns and related compositions. The atomic layer chemical patterns may be formed from two-dimensional materials such as graphene. The atomic layer chemical patterns provide high resolution, low defect directed self-assembly. For example, DSA on a graphene pattern can be used achieve ten times the resolution of DSA that is achievable on a three-dimensional pattern such as a polymer brush. Assembly of block copolymers on the atomic layer chemical patterns may also facilitate subsequent etch, as the atomic layer chemical patterns are easier to etch than conventional pattern materials.
Abstract:
Composite materials comprising electrically conductive particles in a form-stable phase change materials (PCMs) are provided. Also provided as radiation sensors incorporating the composites and methods for detecting radiation using the composites. The PCMs comprise crosslinked polyether polyol that undergoes a reversible solid-solid phase change upon heating. Prior to the phase change, the crosslinked polyether polyol comprises microscopic crystalline domains. When the PCM is heated beyond its phase transition temperature these microscopic crystalline domains melt. However, the form-stable PCMs retain their solid form at the macroscopic level.
Abstract:
Photoreceptor scaffolds and scaffold systems including the photoreceptor scaffolds are described herein. The scaffolds and scaffold systems can be used for transplantation of organized photoreceptor tissue, with or without RPE, which may improve grafted cell survival, integration, and functional visual rescue. Particularly, the photoreceptor scaffold is structured from a biocompatible film, patterned with an array of unique through-holes having a curvilinear cell receiver and at least one cell guide channel.
Abstract:
Piezoresistive composite materials comprising electrically conductive particles in a polymeric phase change material are provided. Also provided are strain sensors incorporating the composites and methods for detecting mechanical strain using the composites.
Abstract:
MOSFET phototransistors, methods of operating the MOSFET phototransistors and methods of making the MOSFET phototransistors are provided. The phototransistors have a buried electrode configuration, which makes it possible to irradiate the entire surface areas of the radiation-receiving surfaces of the phototransistors.
Abstract:
Tandem solar cells comprising two or more solar cells connected in a solar cell stack via pn diode tunnel junctions and methods for fabricating the tandem solar cells using epitaxial lift off and transfer printing are provided. The tandem solar cells have improved tunnel junction structures comprising a current tunneling layer integrated between the p and n layers of the pn diode tunnel junction that connects the solar cells.
Abstract:
Composite materials comprising electrically conductive particles in a form-stable phase change materials (PCMs) are provided. Also provided as radiation sensors incorporating the composites and methods for detecting radiation using the composites. The PCMs comprise crosslinked polyether polyol that undergoes a reversible solid-solid phase change upon heating. Prior to the phase change, the crosslinked polyether polyol comprises microscopic crystalline domains. When the PCM is heated beyond its phase transition temperature these microscopic crystalline domains melt. However, the form-stable PCMs retain their solid form at the macroscopic level.
Abstract:
Ultra compact DBRs, VCSELs incorporating the DBRs and methods for making the DBRs are provided. The DBRs are composed of a vertical reflector stack comprising a plurality of adjacent layer pairs, wherein each layer pair includes a layer of single-crystalline Group IV semiconductor and an adjacent layer of silicon dioxide.
Abstract:
Devices for detecting electrical activity in electrically active biological tissues and methods for using the devices are provided. The devices include an electrode array that is configured for implantation on electrically active biological tissue. The electrode array comprises a plurality of electrode sites comprising one or more layers of transparent, electrically conductive graphene disposed on a transparent substrate.
Abstract:
The present invention provides continuous, free-standing metal oxide films and methods for making said films. The methods are able to produce large-area, flexible, thin films having one or more continuous, single-crystalline metal oxide domains. The methods include the steps of forming a surfactant monolayer at the surface of an aqueous solution, wherein the headgroups of the surfactant molecules provide a metal oxide film growth template. When metal ions in the aqueous solution are exposed to the metal oxide film growth template in the presence of hydroxide ions under suitable conditions, a continuous, free-standing metal oxide film can be grown from the film growth template downward into the aqueous solution.