摘要:
The invention provides a semiconductor device with a bonding pad made of a wiring layer including aluminum and its manufacturing method that enhance the yield of the semiconductor device. The method of manufacturing the semiconductor device of the invention includes removing a portion of an antireflection layer (e.g. made of a titanium alloy) formed on an uppermost second wiring layer (e.g. made of aluminum) on a semiconductor substrate by etching, forming a passivation layer covering the antireflection layer and a portion of the second wiring layer where the antireflection layer is not formed and having an opening exposing the other portion of the second wiring layer, and dividing the semiconductor substrate into a plurality of semiconductor dice by dicing. These processes can prevent the antireflection layer from being exposed in the opening, and this can prevent a component of the second wiring layer from being eluted due to cell reaction between the second wiring layer and the antireflection layer as has been seen in the conventional art.
摘要:
A metal structure for an integrated circuit, which has copper interconnecting metallization (311) protected by an overcoat layer (320). A portion of the metallization is exposed in a window (301) opened through the thickness of the overcoat layer. The metal structure comprises a patterned conductive barrier layer (330) positioned on the copper metallization, wherein this barrier layer forms a trough with walls (331) conformal with the overcoat window. The height (331a) of the wall is less (between 3 and 20 %) than the overcoat thickness (320a), forming a step (340). A plug (350) of bondable metal, preferably aluminum, is positioned in the trough and has a thickness equal to the trough wall height (331a).
摘要:
Provided is a semiconductor device comprising a first metal film formed above a semiconductor chip, a ball portion formed over said first metal film and made of a second metal, and an alloy layer of said first metal and said second metal which alloy layer is formed between said first metal film and said ball portion, wherein said alloy layer reaches the bottom of said first metal film, and said ball portion is covered with a resin; and a manufacturing method thereof. The present invention makes it possible to improve adhesion between the bonding pad portion and ball portion of a bonding wire over an interconnect, thereby improving the reliability of the semiconductor device.
摘要:
The present invention relates to a bonding pad of a semiconductor device and a formation method thereof, and the object of the present invention is to prevent bonding defects by enlarging contact area between a bonding pad and a soldering material and to prevent moisture from penetrating into an oxide layer. The present invention provides a bonding pad of a semiconductor device comprising: a barrier metal layer formed on a structure of a semiconductor substrate; a metal wire layer formed on the barrier metal layer; a passivation metal layer formed on the metal wire layer and removed partly to expose a portion of the upper surface of the metal wire layer; an insulating layer which is formed on the passivation metal layer and has a contact hole exposing the metal wire layer via the portion that the passivation metal layer is removed; and an adhesive metal layer formed on the inner surface of the contact hole.
摘要:
A semiconductor device, and a method of fabricating the device, having a copper wiring level and an aluminum bond pad above the copper wiring level. In addition to a barrier layer which is normally present to protect the copper wiring level, there is a composite layer between the aluminum bond pad and the barrier layer to make the aluminum bond pad more robust so as to withstand the forces of bonding and probing. The composite layer is a sandwich of a refractory metal and a refractory metal nitride.
摘要:
An explanation is given of, inter alia, a circuit arrangement in which an intermediate layer (160) made of a dielectric material is arranged between two metal layers (102 and 104). The intermediate layer (160) is designed in such a way that the capacitance per unit area between the connection layers (102, 104) is greater than 0.5 fF/μm2.
摘要翻译:特别地说明了其中由介电材料制成的中间层(160)布置在两个金属层(102和104)之间的电路装置。 中间层(160)被设计成使得连接层(102,104)之间的每单位面积的电容大于0.5fF / m 2。
摘要:
A metal structure for a contact pad of an integrated circuit (IC), which has copper interconnecting metallization (311). A portion (301) of this metallization is exposed to provide a contact pad to the IC. A conductive barrier layer (330) is positioned on the exposed portion of the copper metallization. A plug (350) of bondable metal, preferably aluminum between about 0.4 and 1.4 μm thick, is positioned on the barrier layer. A protective overcoat layer (320) surrounds the plug and has a thickness (320b) so that the exposed surface (322) of the plug lies at or below the exposed surface (320a) of the overcoat layer. Optionally, a portion (321) of the overcoat layer between about 0.1 and 0.3 μm wide may overlap the perimeter of the plug.
摘要:
A highly reliable semiconductor device provided herein can prevent a junction between a pad and a wire from coming off, and pads from peeling off an underlying insulating layer on the interface thereof. The semiconductor device has plugs formed in a region in which an electrode pad is formed over a substrate. The plugs protrude into the electrode pad.
摘要:
Disclosed is a reinforced bond pad structure having nonplanar dielectric structures and a metallic bond layer conformally formed over the nonplanar dielectric structures. The nonplanar dielectric structures are substantially reproduced in the metallic bond layer so as to form nonplanar metallic structures. Surrounding each of the nonplanar metallic structures is a ring of dielectric material which provides a hard stop during probing of the bond pad so as to limit the amount of bond pad that can be removed during probing.
摘要:
A bond pad (10) has a probe region (14) and a wire bond region (12) that are substantially non-overlapping. In one embodiment, the bond pad (10) is connected to a final metal layer pad (16) and extends over an interconnect region (24). The bond pad (10) is formed from aluminum and the final metal layer pad (16) is formed from copper. Separating the probe region (14) from the wire bond region (12) prevents the final metal layer pad (16) from being damaged by probe testing, allowing for more reliable wire bonds. In an application requiring very fine pitch between bond pads, the probe regions (14) and active regions (12) of a plurality of bond pads formed in a line may be staggered to increase the distance between the probe regions (14). In addition, forming the bond pads (10) over the interconnect region (24) reduces the size of the integrated circuit.