摘要:
A semiconductor device includes a metal substrate, semiconductor elements, wires, a control terminal, a main electrode terminal, a control substrate, a cover, a sealing resin, a case, and an insulator. The metal substrate includes a metal plate, an insulating layer formed on the top surface of the metal plate, and electrode patterns provided on the insulating layer. The semiconductor elements are secured to different ones of the electrode patterns by solder. The sealing resin seals the components within the case, such as the semiconductor elements. The insulator covers a portion of the surface of the insulating layer and at least a portion of the edge of each electrode pattern.
摘要:
Each of semiconductor module includes a semiconductor chip, a case surrounding the semiconductor chip, and a main electrode connected to the semiconductor chip and led out to an upper surface of case. A connecting electrode is connected and fixed to the main electrodes of the adjacent semiconductor modules. The connecting electrode is formed only of a metal plate. The rated current, the rated voltage and the circuit configuration can easily be changed by changing the connection using the connecting electrode, thus enabling reduction of the design time and facilitating manufacture management. Only a malfunctioning one of the semiconductor modules may be replaced. There is, therefore, no need to replace the entire device. The connecting electrode is formed of an electrically conductive plate and, therefore, enables reduction of the number of component parts and reduction of the device in size in comparison with the conventional wiring bus bar.
摘要:
A multichip package structure includes a metal substrate, a circuit substrate and a light-emitting module. The metal substrate has a first mirror plane area and a second mirror plane area. The circuit substrate is disposed on the metal substrate. The circuit substrate includes a plurality of first conductive pads, a plurality of second conductive pads, a first passing opening for exposing the first mirror plane area, and a second passing opening for exposing the second mirror plane area. The light-emitting module includes a plurality of light-emitting units disposed on the first mirror plane area. Each light-emitting unit includes a plurality of LED chips disposed on the first mirror plane area. The LED chips of each light-emitting unit are electrically connected between the first conductive pad and the second conductive pad in series. Thus, the heat-dissipating efficiency and the light-emitting effect of the multichip package structure can be increased.
摘要:
A power semiconductor device is provided with a semiconductor-element substrate in which a front-surface electrode pattern is formed on a surface of an insulating substrate; semiconductor elements for electric power which are affixed to the surface of the front-surface electrode pattern; a partition wall which is provided on the front-surface electrode pattern so as to enclose the semiconductor elements for electric power; a first sealing resin member which is filled inside the partition wall; a second sealing resin member which covers the first sealing resin member and a part of the semiconductor-element substrate which is exposed from the partition wall, wherein an electrode for a relay terminal is provided on a surface of the partition wall, and a wiring from inside of the partition wall to outside of the partition wall is led out via the electrode for a relay terminal.
摘要:
Packaged microelectronic devices recessed in support member cavities, and associated methods, are disclosed. Method in accordance with one embodiment includes positioning a microelectronic device in a cavity of a support member, with the cavity having a closed end with a conductive layer, and an opening through which the cavity is assessable. The microelectronic device can have bond sites, a first surface, and a second surface facing opposite from the first surface. The microelectronic device can be positioned in the cavity so that the second surface faces toward and is carried by the conductive layer. The method can further include electrically coupling the bond sites of the microelectronic device to the conductive layer. In particular embodiments, the microelectronic device can be encapsulated in the cavity without the need for a releasable tape layer to temporarily support the microelectronic device.
摘要:
A semiconductor device according to the present invention includes a base plate, an insulating layer provided on an upper surface of the base plate, a metal pattern provided on an upper surface of the insulating layer, a semiconductor element bonded to the metal pattern, and an insulating substrate disposed to be in contact with an upper surface of the semiconductor element. An end of the insulating substrate is located outside the semiconductor element in plan view. The end of the insulating substrate and the metal pattern are directly or indirectly bonded. The semiconductor element includes an electrode on the upper surface. A portion of the insulating substrate, in which the electrode on the upper surface of the semiconductor element overlaps in plan view, is provided with a through-hole.
摘要:
Provided is a semiconductor device including a package having a hollow portion, which can meet the need of reduction in size and thickness. The semiconductor device includes: a resin molded member (1) including a hollow portion (10) having an inner bottom surface on which a semiconductor chip (6) is mounted, a surrounding portion (1b) that surrounds the hollow portion (10), and a bottom surface portion (1a); an inner lead (2e, 2f); and an outer lead (2a, 2b) exposed from the resin molded member (1). The inner lead buried in the molded member (1) includes an L-shaped lead extending portion having a through hole formed therethrough.
摘要:
There is provided a power module production method that is capable of stably producing a power module with highly reliable properties, and so forth. The power module production method produces a power module 1 by stacking a cooler 5, an insulating resin sheet 4, a heat sink block 3, and a semiconductor chip 2, wherein a first insulating resin sheet 41, which forms a lower layer of the insulating resin sheet 4, is first bonded to the cooler 5 by thermal compression. Next, with a second insulating resin sheet 42, which forms an upper layer of the insulating resin sheet 4, interposed between the first insulating resin sheet 41 and the heat sink block 3, the second insulating resin sheet 42 is bonded to the first insulating resin sheet 41 by thermal compression, and the heat sink block 3 is bonded to the second insulating resin sheet 42 by thermal compression. The semiconductor chip 2 is then soldered onto the heat sink block 3. Thus, bonding defects at the respective bonding interfaces are prevented, and dielectric breakdown of the insulating resin sheet 4 is prevented.
摘要:
Provided is a power module. The power module includes a power semiconductor chip. The power module further includes a case that accommodates the power semiconductor chip. A silicone gel seals the power semiconductor chip within the case. The silicone gel including a heat-resistant silicone gel containing 20 to 100 mass ppm of a metal complex comprising a metal selected from a group consisting of iron and platinum.
摘要:
In a method of manufacturing a semiconductor device, a molding die for molding a resin case for a semiconductor device is prepared such that the molding die has protrusions to fix each of a plurality of terminals having a leg portion in a predetermined position. Each of the plurality of terminals is held to the corresponding protrusions in the molding die, and resin is injected into the molding die to integrally mold the plurality of terminals and the resin case.