Abstract:
To provide a components joining method and a components joining structure which can realize joining of components while securing conduction at a low electrical resistance with high reliability.In a construction in which by using a solder paste containing solder particles 5 in a thermosetting resin 3a, a rigid substrate 1 and a flexible substrate 7 are bonded by the thermosetting resin 3a, and a first terminal 2 and a second terminal 8 are electrically connected by the solder particles 5, a blending ratio of an activator of the thermosetting resin 3a in the solder paste is properly set and oxide film removed portions 2b, 8b, and 5b are partially formed in oxide films 2a, 8a, and 5a of the first terminal 2, the second terminal 8, and the solder particles 5. Thereby, the first terminal 2 and the second terminal 8 are electrically conducted by solder bonding the solder particles 5 to both the first terminal 2 and the second terminal 8 via the oxide film removed portions 2b and 8b, and while fusion of the solder particles 5 with each other is prevented in the thermosetting resin 3a, connection of components at a low electrical resistance is realized with high reliability.
Abstract:
In a hybrid integrated circuit device that uses a metal substrate, a sound noise is prevented, which would otherwise be generated due to transmission, to the metal substrate, of vibration caused when a ceramic capacitor expands and contracts by switching ON and OFF a transistor. For improving a heat dissipation effect, a switching transistor driven by a driving pulse and a ceramic capacitor connected to the switching transistor are incorporated on a conductive path on an insulated metal substrate. Both ends of the ceramic capacitor are fixed to the conductive path by solders which are covered with a hard resin to be protected from a solder crack by thermal expansion of the metal substrate. The ceramic capacitor and the hard resin are wholly covered with a soft resin which absorbs noise due to expansion caused when the ceramic capacitor is switched, so that the metal substrate is prevented from resonating.
Abstract:
A method for manufacturing an electro-optical device including an element substrate which includes a plurality of pixels including pixel electrodes and which is connected to a circuit board includes providing a UV-curable molding member on the element substrate such that the molding member extends from the element substrate to the circuit board and also includes curing the molding member by irradiating the molding member with UV light. The element substrate includes an electrostatic protection circuit. The electrostatic protection circuit is shielded from the UV light applied to the molding member in the operation of curing the molding member.
Abstract:
A flip chip mounting process includes the steps of supplying a resin (13) containing solder powder and a convection additive (12) onto a wiring substrate (10) having a plurality of electrode terminals (II), then bringing a semiconductor chip (20) having a plurality of connecting terminals (11) into contact with a surface of the supplied resin (13), and then heating the wiring substrate (10) to a temperature that enables the solder powder to melt. The heating step is carried out at a temperature that is higher than the boiling point of the convection additive (12) to allow the boiling convection additive (12) to move within the resin (12). During this heating step, the melted solder powder is allowed to self-assemble into the region between each electrode terminal (11) of the wiring substrate (10) and each connecting terminal (21) of the semiconductor chip to form an electrical connection between each electrode terminal (11) and each connecting terminal (21).
Abstract:
According to one aspect, the invention provides a method of providing conductive structures between two foils in a multi-foil system. The system comprises at least two foils, from which at least one foil comprises a terminal. The method comprises the steps of (in any order) providing at least one solid state adhesive layer, patterning adhesive layer with through-holes; filling the through-holes with conductive material, so as to form the conductive structure, connected to the terminal; and bonding the at least two foils.One advantage of the invention is that it may be used in a manufacturing process for multi-foil systems.
Abstract:
The electrode junction structure includes: a glass substrate; a plurality of flexible substrates, in a planar view, arranged to cross over an edge of the glass substrate and arranged to have a space from each other along the edge; an adhesive for joining the glass substrate and each flexible substrate; and a sealing resin for covering junction portions between the glass substrate and each flexible substrate, wherein an edge of the sealing resin is formed so that the edge of the sealing resin has, in the planar view, a consecutive waveform portion in which a convex portion and a concave portion alternate with an imaginary line as a center axis, the imaginary line being parallel to the edge of the glass substrate and locating outer than the edge of the glass substrate, and wherein the convex portions are formed to be located on the flexible substrates.
Abstract:
A semiconductor device comprises a wiring substrate including a wiring pattern; a semiconductor chip installed on the wiring substrate, including a plurality of pads formed on a surface of the semiconductor chip, which opposes the wiring substrate; a first resin layer covering over a part of the wiring pattern within a region of overlapping the semiconductor chip; and a second resin layer installed between the semiconductor chip and the first resin layer. The pads are oppose to and coupled with a part of the wiring pattern exposed over the first resin layer; and the linear expansion coefficient of the wiring substrate is larger than that of the semiconductor chip, the elastic modulus of the wiring substrate is lower than that of the semiconductor chip and the linear expansion coefficient of the first resin layer is larger than that of the second resin layer. The elastic modulus of the first resin layer is lower than that of the second resin layer.
Abstract:
An RFID tag including a base including a resin material, an antenna pattern disposed on a surface of the base, and a reinforcement pad disposed on the surface of the base. A thermosetting adhesive is applied onto the antenna pattern and the reinforcement pad, and a circuit chip is electrically coupled to the antenna pattern via the thermosetting adhesive. The reinforcement pad is formed within a region where the circuit chip is mounted, and the circuit chip includes a first protrusion contacting the antenna pattern and a second protrusion contacting the reinforcement pad.
Abstract:
A resin filling apparatus, a filling method, and a method of manufacturing an electronic device fill a cavity between a substrate and an electronic component mounted on the substrate with resin. The resin filling apparatus includes a stage for supporting the substrate in an inclined state, and an application head for filling the cavity with resin from a lower side of the inclined substrate.
Abstract:
A structure with electronic component mounted therein includes a wiring board on which an electronic component is mounted at least on its first face, resin provided at least between the electronic component and the wiring board, and a plurality of holes formed in the wiring board at region corresponding to a mounting position of the electronic component. The holes are filled with the resin. This suppresses warpage of the structure with electronic component mounted therein, and also improves reliability by reducing a stress applied to a bonding section between the wiring board and the electronic component.